Arturo Benayas Ayuso | Generative Artificial Intelligence | Best Researcher Award

Prof. Arturo Benayas Ayuso | Generative Artificial Intelligence | Best Researcher Award

PhD Candidate at Polytechnic University of Madrid, Spain

Arturo Benayas Ayuso is a highly skilled naval architect with over two decades of experience in naval shipbuilding, digitization, and PLM (Product Lifecycle Management) systems integration. Known for his contributions to advancing digital solutions in the naval sector, he currently leads the integration efforts for NAVANTIA’s “El Cano” platform, which leverages cutting-edge technologies under the Industry 4.0 paradigm. This platform integrates complex processes in ship design, construction, and maintenance, marking a significant stride in naval digitization. Arturo is recognized for his leadership, technical expertise, and commitment to continuous improvement, which have consistently contributed to both national defense and international maritime innovation. His career reflects a dynamic blend of hands-on expertise, theoretical knowledge, and thought leadership within his field.

Profile

ORCID

Education

Arturo’s educational background is grounded in naval architecture, with a Master’s degree from the prestigious Universidad Politécnica de Madrid. His specialized training in marine motors provided him with a strong foundation for understanding the technical demands of naval engineering. Currently, Arturo is pursuing a PhD focused on IoT applications in ship design, construction, and management, further expanding his research in digitalization and its transformative impacts on the naval industry. His academic pursuits are complemented by numerous advanced courses in PLM platforms, machine learning, and materials science, reflecting his commitment to staying at the forefront of technological advancements relevant to his field.

Professional Experience

Arturo’s professional career spans pivotal roles in renowned engineering firms and projects within the naval and aerospace industries. His experience includes serving as a Technical Account Manager, Solution Architect, and Associate Manager, where he has spearheaded complex PLM integrations, notably in projects such as the Spanish Navy’s S80P submarine and the collaborative development of the Royal Navy’s CVF program. His role as Integration Lead for the “El Cano” platform exemplifies his capability to manage large teams, oversee end-to-end PLM implementations, and introduce digital solutions that optimize naval operations on an international scale. Throughout his career, Arturo has contributed to innovative projects, ensuring seamless transitions across software platforms and providing critical support for project management in challenging environments.

Research Interests

Arturo’s research interests lie at the intersection of naval architecture, digital transformation, and the Internet of Things (IoT). His doctoral research focuses on applying IoT to streamline and enhance various stages of ship design, manufacturing, and management. By leveraging data analytics, he explores ways to optimize shipbuilding efficiency and reduce costs. Arturo is also passionate about cybersecurity in IoT networks, recognizing the importance of robust security measures in protecting sensitive maritime operations. Additionally, he has an interest in machine learning and its potential applications in automating design processes, which could significantly advance naval engineering and shipyard productivity.

Awards and Recognitions

While Arturo has not received specific awards to date, his role as a thought leader and influential practitioner in naval PLM integration has earned him considerable recognition in his field. His significant contributions to NAVANTIA’s “El Cano” platform have been widely regarded as a benchmark for digital transformation within the naval industry. Furthermore, his insights on naval digitization and IoT applications in shipbuilding have been published in respected journals and presented at international conferences. These accomplishments underscore his impact on the industry and his commitment to innovation.

Publications

Benayas Ayuso, A. & Cebollero, A. (2011). “Integrated Development Environment in Shipbuilding Computer Systems.” ICAS Conference Paper. Cited by 17.
Benayas-Ayuso, A., & Pérez Fernández, R. (2018). “Automated/Controlled Storage for an Efficient MBOM Process in the Shipbuilding Managing the IoT Technology.” RINA Smart Ship Technology. Cited by 22.
Pérez Fernández, R., & Benayas-Ayuso, A. (2018). “Data Management for Smart Ship or How to Reduce Machine Learning Cost in IoS Applications.” RINA Smart Ship Technology. Cited by 18.
Benayas-Ayuso, A., & Pérez Fernández, R. (2019). “What does the Shipbuilding Industry Expect from the CAD/CAM/CAE Systems in the Next Years?” Naval Architect Magazine. Cited by 13.
Benayas Ayuso, A. (2021). “Internet of Things Cybersecurity – Blockchain as First Securitisation Layer of an IoT Network.” In Introduction to IoT in Management Science and Operations Research. Cited by 25.

Conclusion

Arturo Benayas Ayuso’s career exemplifies a blend of practical expertise and research-driven innovation. His contributions to naval digitalization, particularly through his work on the “El Cano” platform, highlight his commitment to integrating advanced technologies in shipbuilding. Arturo’s focus on IoT and cybersecurity, coupled with his passion for teaching, positions him as a forward-thinking leader in his field. As he continues to contribute to the academic and professional spheres, his research has the potential to reshape naval engineering, making him a strong candidate for the Best Researcher Award. His work reflects a dedication to innovation, resilience in navigating complex projects, and a vision for the future of naval architecture and digital integration.

Preeti Sharma | Deep Learning | Women Researcher Award

Mrs . Preeti Sharma | Deep Learning | Women Researcher Award 

Assistant Professor , DIT University, Dehradun, Uttrakhand , India

Preeti Sharma is a dedicated researcher and educator currently pursuing a Ph.D. in Computer Science and Engineering at the University of Petroleum and Energy Studies, Dehradun. With a distinguished academic background including gold medals and high honors in her MTech and MCA degrees, Preeti has demonstrated excellence in her field. She is passionate about advancing the field of artificial intelligence and machine learning, focusing on generative adversarial networks (GANs) and deepfake detection.

Profile

Google Scholar

Education 

Preeti Sharma is pursuing a Ph.D. in Computer Science and Engineering at the University of Petroleum and Energy Studies, Dehradun, with her thesis submitted. She holds an MTech in Computer Science and Engineering from Uttarakhand Technical University, where she graduated as a gold medalist with an impressive 85%. Preeti completed her M.C.A. from M.D.U. (Campus), Rohtak, with a strong academic record of 82%.

Experience 

Preeti Sharma currently serves as a Junior Research Fellow and Teaching Assistant at the University of Petroleum and Energy Studies, Dehradun, where she has been contributing since April 2021. Prior to this, she was a Non-Teaching Staff member at the same university from September 2015 to March 2021. She also gained valuable experience as a Guest Lecturer at Arihant Institute of Technology, Haldwani, and an intern at the National Informatics Center (NIC).

Research Interests 

Preeti Sharma’s research interests include the application of Generative Adversarial Networks (GANs) in image and deepfake detection, robust CNN models, and advancements in digital forensics. Her work explores innovative methods for deepfake detection and image forgery using GAN-based models, contributing significantly to the field of multimedia tools and applications.

Awards 

Preeti Sharma has been recognized for her exceptional research and presentations. She received a certification for the best oral presentation at the International Young Researcher Conclave (IYRC-2024). Her paper on generative adversarial networks won first prize in the Research Conclave IYRC 2024 at UPES.

Publications 

  • Sharma, P., Kumar, M., Sharma, H.K. et al. Generative adversarial networks (GANs): Introduction, Taxonomy, Variants, Limitations, and Applications. Multimedia Tools and Applications (2024). Link
  • Sharma, P., Kumar, M., & Sharma, H.K. Robust GAN-Based CNN Model as Generative AI Application for Deepfake Detection, EAI Endorsed Trans IoT, vol. 10 (2024).
  • Sharma, P., Kumar, M., & Sharma, H.K. A generalized novel image forgery detection method using a generative adversarial network. Multimedia Tools and Applications (2023). Link
  • Sharma, P., Kumar, M., & Sharma, H.K. A GAN-based model of deepfake detection in social media. Procedia Computer Science, 218, 2153-2162 (2023).
  • Sharma, P., Kumar, M., & Sharma, H.K. Comprehensive analyses of image forgery detection methods from traditional to deep learning approaches: an evaluation. Multimedia Tools and Applications, 82(12), 18117-18150 (2023).
  • Sharma, P., Kumar, M., & Sharma, H.K. A Guide to Digital Forensic: Theoretical to Software-Based Investigations. Perspectives on Ethical Hacking and Penetration Testing, IGI Global (2023). Link
  • Sharma, P., Kumar, M., & Sharma, H.K. CNN-based Facial Expression Recognition System Using Deep Learning Approach. Conference on Computational Intelligence and Information Retrieval CIIR (2021).
  • Sharma, P. Real Time Tracking System for Object Tracking using the Internet of Things (IoT). Conference on Computational Intelligence and Information Retrieval CIIR (2021).
  • Sharma, P. Leach and Improved Leach: A Review. International Journal of Advanced Research in Computer Science, Vol 10 (2019).

Conclusion

Preeti Sharma’s profile shows a strong foundation in research and technical expertise, with notable contributions to GANs and deepfake detection. Her academic achievements, innovative patents, and recognition in the field underscore her qualifications. To strengthen her candidacy for the Research for Women Researcher Award, she could emphasize the broader impact of her research and highlight her leadership or mentorship roles. Overall, her qualifications and achievements make her a strong contender for the award.

ANUJA BHARGAVA | Artificial Intelligence | Most Cited Paper Award

Assist Prof Dr. ANUJA BHARGAVA | Artificial Intelligence | Most Cited Paper Award

Assistant Professor GLA University India

Dr. Anuja Bhargava is an accomplished academic and researcher, currently serving as an Assistant Professor at GLA University, Mathura. With a Ph.D. in Electronics and Communication Engineering, she specializes in Digital Signal Processing, VLSI, and Artificial Intelligence. Dr. Bhargava has a wealth of teaching experience and has published extensively in renowned journals and conferences. Her dedication to education and research has earned her a prominent place in her field.

Profile

Scopus

Education 🎓

Dr. Anuja Bhargava earned her Ph.D. in Electronics and Communication Engineering from GLA University, Mathura, where she conducted groundbreaking research on “Quality Evaluation of Fruits using Image Processing.” She holds a Master of Technology in Digital Communication from Uttrakhand Technical University and a Bachelor of Engineering in Electronics and Communication Engineering from Modi Institute of Technology, Kota, both with first-class honors.

Experience 🏫

Dr. Bhargava’s academic journey includes roles as Assistant Professor at GLA University since October 2021, and previously at Gurukul Institute of Engineering & Technology and Maharishi Arvind International Institute of Technology. Her extensive teaching experience spans over a decade, focusing on various aspects of electronics and communication engineering.

Research Interests 🔍

Dr. Bhargava’s research interests are diverse and include Digital Signal Processing, Very Large Scale Integration (VLSI), Control Systems, Signal and Systems, Electromagnetic Field Theory, Microprocessors, and Basic Electrical and Electronics. She is particularly interested in the application of Artificial Intelligence in these domains.

Awards 🏆

Dr. Anuja Bhargava has been recognized for her contributions to academia and research with various awards and nominations. She has served as a keynote speaker at international conferences and received accolades for her innovative research and teaching methodologies.

Publications Top Notes 📚

Gupta D, Bhargava A, et al. “Deep Learning-Based Truthful and Deceptive Hotel Reviews.” Sustainability, 2024, link, cited by articles.

Bhargava A, et al. “Plant Leaf Disease Detection, Classification and Diagnosis using Computer Vision and AI: A Review.” IEEE Access, 2024, link, cited by articles.

Sachdeva A, Bhargava A, et al. “A CNTFET based stable, single ended 7T SRAM cell with improved write operation.” Physica Scripta, 2024, link, cited by articles.

Bhargava A, et al. “Machine learning & computer vision-based optimum black tea fermentation detection.” Multimed Tools Appl, 2023, link, cited by articles.

Sharma A, Bhargava A, et al. “Multi-level Segmentation of Fruits Using Modified Firefly Algorithm.” Food Anal. Methods, 2022, link, cited by articles.

Paulo Vinicius Moreira Dutra | Artificial Intelligence and Machine Learning | Best Researcher Award

Mr.Paulo Vinicius Moreira Dutra | Artificial Intelligence and Machine Learning | Best Researcher Award

Master Federal University of Juiz de Fora Brazil

Paulo Vinícius Moreira Dutra is a dedicated computer science professor specializing in system development, software engineering, and digital games. With over a decade of teaching experience, Paulo has made significant contributions to various educational institutions, including the Instituto Federal de Educação Ciência e Tecnologia Sudeste de Minas Gerais.

Profile

ORCiD

Education

🎓 Paulo holds a Master’s degree in Computer Science from the Universidade Federal de Juiz de Fora (2023), with a focus on artificial intelligence. He also has a specialization in Computer Programming (2008), Higher Education Teaching (2017), and Digital Game Development (2018), as well as a bachelor’s degree in System Development Technology (2006).

Experience

💼 Paulo has extensive experience in both academia and industry. He has taught at the Faculdade de Filosofia, Ciências e Letras Santa Marcelina and currently serves as a professor at the Instituto Federal do Sudeste de Minas Gerais. His professional journey also includes a role as a systems analyst at Dvallone Tecidos Ltda, where he developed applications using Delphi, Advpl, and C#.

Research Interest

🔍 Paulo’s research interests lie in system development, software engineering, digital games, databases, machine learning, and reinforcement learning. His work often explores the intersection of artificial intelligence and game development, focusing on procedural content generation and educational applications.

Awards

🏆 Paulo has been recognized for his contributions to computer science education and research. His innovative approach to teaching and his impactful research projects have earned him accolades and nominations in various academic circles.

Publications

📝 Paulo has published several research articles and papers in esteemed journals and conferences. Notable publications include:

  1. “ARTOOLKIT: UMA BIBLIOTECA PARA CONSTRUÇÃO DE APLICAÇÕES EM REALIDADE AUMENTADA” (2016). Published in DUC IN ALTUM (Muriaé). Link.
  2. “Desenvolvimento de um framework para construção de aplicações desktop em java utilizando swing” (2011). Published in Duc in Altum (Muriaé).
  3. “A mixed-initiative design framework for procedural content generation using reinforcement learning” (2024). Accepted for publication in ENTERTAINMENT COMPUTING.
  4. “Procedural Content Generation using Reinforcement Learning and Entropy Measure as Feedback” (2022). Presented at the 21st Brazilian Symposium on Computer Games and Digital Entertainment (SBGames). Link.