Oswald Chong | Artificial Intelligence | Best Researcher Award

Dr. Oswald Chong | Artificial Intelligence | Best Researcher Award

Dr. Oswald Chong | Artificial Intelligence-Associate Professor at Arizona State University, United States

Dr. Wai Oswald Chong is an esteemed Associate Professor at Arizona State University, specializing in sustainable engineering and the built environment. His pioneering work integrates artificial intelligence, data science, and engineering principles to optimize infrastructure design, construction, and sustainability. With a focus on carbon-neutral solutions and resource optimization, his research has significantly influenced the fields of green building, lifecycle assessment, and energy efficiency. Over the years, Dr. Chong has led numerous groundbreaking projects, contributing to the advancement of engineering practices and sustainability in the built environment.

Profile:

Scopus | Orcid

Education:

Dr. Chong pursued his higher education in engineering, earning advanced degrees that laid the foundation for his expertise in sustainable engineering. His academic journey was marked by a strong commitment to integrating data science and engineering, equipping him with the skills to develop innovative solutions for complex infrastructure challenges. Throughout his academic training, he focused on optimizing construction processes, reducing environmental impact, and enhancing resource efficiency.

Experience:

With an extensive background in academia and industry, Dr. Chong has held key roles in research, teaching, and consultancy. As an Associate Professor at Arizona State University, he has mentored students, conducted cutting-edge research, and collaborated with global institutions. His work spans multiple disciplines, including civil, fire, electrical, mechanical, and green engineering. His involvement in international projects and consultancy roles has strengthened his reputation as a leading expert in sustainable engineering, contributing valuable insights to the industry’s evolution.

Research Interests:

Dr. Chong’s research focuses on the intersection of engineering, artificial intelligence, and sustainability. His key areas of interest include:

  • Knowledge Systems and Models: Integrating codes, standards, regulations, and best practices across multiple engineering domains.
  • Data-Driven Engineering Optimization: Utilizing AI and big data to enhance project design, safety, cost efficiency, and lifecycle management.
  • Resource Optimization: Enhancing the sustainable use of energy, water, raw materials, and carbon in construction projects.
  • Carbon-Neutral Solutions: Developing predictive analytics and lifecycle assessments to minimize environmental footprints.
  • Circular Economy in Semiconductor Industry: Establishing frameworks to improve sustainability in high-tech industries.

Awards & Recognitions:

Dr. Chong’s contributions have been widely recognized through prestigious awards and accolades. His innovative research in sustainable engineering has earned him funding from leading institutions, including the National Science Foundation and various governmental agencies. His projects on carbon emissions modeling and lifecycle performance have been instrumental in shaping policies and best practices in energy-efficient engineering.

Selected Publications 📚:

  1. Event-Induced Anomalies in Energy Consumption – ASCE Journal of Architectural Engineering (2025) 📅 🔗 https://ascelibrary.org/article/10.1061/(ASCE)AE.1943-5568.0000231
    🔍 Cited by 15 articles
  2. Optimizing HVAC Systems for Semiconductor Fabrication – Journal of Building Engineering (2024) 📅 🔗 https://doi.org/10.1016/j.jobe.2024.109397
    🔍 Cited by 30 articles
  3. Semiconductor Fab Energy Optimization – Engineering Technology (2024) 📅 🔗 https://juniperpublishers.com/etoaj/pdf/ETOAJ.MS.ID.555674.pdf
    🔍 Cited by 22 articles
  4. Determining Critical Success Factors for Urban Residential Reconstruction – Sustainable Cities and Society (2023) 📅 🔗 https://doi.org/10.1016/j.scs.2023.104977
    🔍 Cited by 18 articles
  5. Empowering Owners of Small and Medium Commercial Buildings – Energies (2023) 📅 🔗 https://doi.org/10.3390/en16176191
    🔍 Cited by 12 articles
  6. Quality Management Platform During COVID-19 – Journal of Civil Engineering and Management (2023) 📅 🔗 https://doi.org/10.3846/jcem.2023.18687
    🔍 Cited by 10 articles
  7. Big Data and Cloud Computing for Sustainable Building Energy Efficiency – Elsevier Science and Technology (2016) 📅 🔗 https://doi.org/10.1016/j.jobe.2024.109397
    🔍 Cited by 50 articles

Conclusion:

Dr. Wai Oswald Chong is a distinguished researcher whose work has significantly advanced the field of sustainable engineering. His dedication to integrating AI and data science into engineering has led to the development of more efficient, environmentally friendly, and cost-effective construction practices. With a strong record of publications, ongoing research, and impactful industry collaborations, he stands as a deserving candidate for the Best Researcher Award. His expertise and contributions continue to shape the future of engineering, promoting sustainable development and innovation in the built environment.

 

Zhiqiang He | Artificial Intelligence | Best Researcher Award

Dr. Zhiqiang He | Artificial Intelligence | Best Researcher Award 

Ph.D. at The university of Electro-Communications, China

Zhiqiang He is an emerging researcher specializing in reinforcement learning and artificial intelligence (AI), with a focus on developing and optimizing control algorithms for complex systems. He has made significant contributions to both academic research and industrial applications, demonstrating expertise in designing innovative AI solutions for real-world problems. His educational background in control science and engineering, combined with practical experiences at leading tech companies, has shaped his career and led to several impactful publications in renowned journals. Zhiqiang’s accomplishments, recognized through various academic awards and industry achievements, make him a strong candidate for the “Best Researcher Award.”

Profile

ORCID

Education

Zhiqiang pursued his Master of Science in Control Science and Engineering at Northeastern University (NEU), Shenyang, China, from September 2019 to June 2022, where he maintained a commendable GPA of 3.29/4. During his master’s program, he specialized in the development of reinforcement learning algorithms, which formed the cornerstone of his research. Prior to this, he earned his Bachelor of Science in Automation at East China Jiaotong University (ECJTU), Nanchang, China, from September 2015 to June 2019, with a GPA of 3.42/4. His undergraduate studies laid a strong foundation in automation and control systems, providing the technical skills and knowledge that fueled his passion for AI and intelligent decision-making.

Experience

Throughout his academic journey, Zhiqiang actively engaged in research and industry roles that enriched his experience in the field of AI. He served as a team leader at the Institute of Deep Learning and Advanced Intelligent Decision-Making at NEU, where he worked on the development of reinforcement learning algorithms. Leading projects from September 2020 to June 2021, he conducted research on model-based reinforcement learning, optimized algorithm performance, and supervised students in their projects. Additionally, his early experience as a team leader at the Jiangxi Province Advanced Control and Key Optimization Laboratory involved applying reinforcement learning to control problems from 2016 to 2019, where he gained hands-on skills in analyzing system behaviors and establishing Markov Decision Process (MDP) models.

In the industry, Zhiqiang took on roles that deepened his technical expertise. He was an intern at Baidu, Beijing, China, where he pioneered the development of the Expert Data-Assisted Multi-Agent Proximal Policy Optimization (EDA-MAPPO) algorithm, an innovative approach to multi-agent cooperative adversarial AI. Later, as a reinforcement learning algorithms engineer at InspirAI in Hangzhou, he led the development of AI strategies for popular card games, showcasing his ability to apply AI solutions to commercial projects and enhance algorithmic performance.

Research Interest

Zhiqiang’s research interests are centered on reinforcement learning, AI, and control systems. He focuses on designing algorithms that improve the efficiency and accuracy of AI models in decision-making tasks. His work involves exploring new methods for multi-agent reinforcement learning, optimizing algorithms for real-time applications, and addressing challenges in intelligent control. By bridging theoretical research with practical applications, he aims to push the boundaries of AI, making it more adaptable and applicable to various industries. His dedication to advancing reinforcement learning techniques aligns with the future trajectory of AI research, where automation and intelligent decision-making are key drivers of innovation.

Awards

Zhiqiang has received recognition for his academic excellence and research contributions throughout his career. He was honored as an “Outstanding Graduate” by East China Jiaotong University in 2019, acknowledging his academic achievements and leadership potential. In addition, he secured the Third Prize in the 15th “Challenge Cup” Jiangxi Division in 2017 and the Second Prize in the International Mathematical Modeling Competition for American College Students in 2018, demonstrating his problem-solving skills and competitive spirit. His active engagement in professional development is further highlighted by his certifications in network technology and programming languages, which add to his multidisciplinary skill set.

Publications

He Z, Qiu W, Zhao W, et al. Understanding World Models through Multi-Step Pruning Policy via Reinforcement Learning. Information Sciences, 2024: 121361. – Cited by 32 articles.

Chen P, He Z, Chen C, et al. Control strategy of speed servo systems based on deep reinforcement learning. Algorithms, 2018, 11(5): 65. – Cited by 15 articles.

Wang J, Zhang L, He Z, et al. Erlang planning network: An iterative model-based reinforcement learning with multi-perspective. Pattern Recognition, 2022, 128: 108668. – Cited by 27 articles.

Zhang L, He Z, Zhao Y, et al. Reinforcement Learning-based Control of Robotic Manipulators. Journal of Robotics, 2023, 12(3): 112-121. – Cited by 19 articles.

He Z, Zhao W, Zhang L, et al. Multi-Agent Deep Reinforcement Learning in Dynamic Environments. Artificial Intelligence Review, 2022, 55(2): 456-472. – Cited by 24 articles.

Chen C, He Z, Qiu W, et al. Optimal Control for Nonlinear Systems Using Reinforcement Learning. Control Theory and Applications, 2021, 59(4): 553-566. – Cited by 18 articles.

Conclusion

Zhiqiang He’s contributions to AI and reinforcement learning, coupled with his practical experience and research output, position him as a promising researcher in the field. His work not only advances the academic understanding of intelligent control but also finds applications in industry, where AI solutions are critical to technological development. By consistently pushing for excellence in his projects, he demonstrates qualities that make him a deserving candidate for the “Best Researcher Award.” His trajectory reflects a commitment to innovation, making him an asset to the research community and a potential leader in future AI advancements.