Zhiqiang He | Artificial Intelligence | Best Researcher Award

Dr. Zhiqiang He | Artificial Intelligence | Best Researcher Award 

Ph.D. at The university of Electro-Communications, China

Zhiqiang He is an emerging researcher specializing in reinforcement learning and artificial intelligence (AI), with a focus on developing and optimizing control algorithms for complex systems. He has made significant contributions to both academic research and industrial applications, demonstrating expertise in designing innovative AI solutions for real-world problems. His educational background in control science and engineering, combined with practical experiences at leading tech companies, has shaped his career and led to several impactful publications in renowned journals. Zhiqiang’s accomplishments, recognized through various academic awards and industry achievements, make him a strong candidate for the “Best Researcher Award.”

Profile

ORCID

Education

Zhiqiang pursued his Master of Science in Control Science and Engineering at Northeastern University (NEU), Shenyang, China, from September 2019 to June 2022, where he maintained a commendable GPA of 3.29/4. During his master’s program, he specialized in the development of reinforcement learning algorithms, which formed the cornerstone of his research. Prior to this, he earned his Bachelor of Science in Automation at East China Jiaotong University (ECJTU), Nanchang, China, from September 2015 to June 2019, with a GPA of 3.42/4. His undergraduate studies laid a strong foundation in automation and control systems, providing the technical skills and knowledge that fueled his passion for AI and intelligent decision-making.

Experience

Throughout his academic journey, Zhiqiang actively engaged in research and industry roles that enriched his experience in the field of AI. He served as a team leader at the Institute of Deep Learning and Advanced Intelligent Decision-Making at NEU, where he worked on the development of reinforcement learning algorithms. Leading projects from September 2020 to June 2021, he conducted research on model-based reinforcement learning, optimized algorithm performance, and supervised students in their projects. Additionally, his early experience as a team leader at the Jiangxi Province Advanced Control and Key Optimization Laboratory involved applying reinforcement learning to control problems from 2016 to 2019, where he gained hands-on skills in analyzing system behaviors and establishing Markov Decision Process (MDP) models.

In the industry, Zhiqiang took on roles that deepened his technical expertise. He was an intern at Baidu, Beijing, China, where he pioneered the development of the Expert Data-Assisted Multi-Agent Proximal Policy Optimization (EDA-MAPPO) algorithm, an innovative approach to multi-agent cooperative adversarial AI. Later, as a reinforcement learning algorithms engineer at InspirAI in Hangzhou, he led the development of AI strategies for popular card games, showcasing his ability to apply AI solutions to commercial projects and enhance algorithmic performance.

Research Interest

Zhiqiang’s research interests are centered on reinforcement learning, AI, and control systems. He focuses on designing algorithms that improve the efficiency and accuracy of AI models in decision-making tasks. His work involves exploring new methods for multi-agent reinforcement learning, optimizing algorithms for real-time applications, and addressing challenges in intelligent control. By bridging theoretical research with practical applications, he aims to push the boundaries of AI, making it more adaptable and applicable to various industries. His dedication to advancing reinforcement learning techniques aligns with the future trajectory of AI research, where automation and intelligent decision-making are key drivers of innovation.

Awards

Zhiqiang has received recognition for his academic excellence and research contributions throughout his career. He was honored as an “Outstanding Graduate” by East China Jiaotong University in 2019, acknowledging his academic achievements and leadership potential. In addition, he secured the Third Prize in the 15th “Challenge Cup” Jiangxi Division in 2017 and the Second Prize in the International Mathematical Modeling Competition for American College Students in 2018, demonstrating his problem-solving skills and competitive spirit. His active engagement in professional development is further highlighted by his certifications in network technology and programming languages, which add to his multidisciplinary skill set.

Publications

He Z, Qiu W, Zhao W, et al. Understanding World Models through Multi-Step Pruning Policy via Reinforcement Learning. Information Sciences, 2024: 121361. – Cited by 32 articles.

Chen P, He Z, Chen C, et al. Control strategy of speed servo systems based on deep reinforcement learning. Algorithms, 2018, 11(5): 65. – Cited by 15 articles.

Wang J, Zhang L, He Z, et al. Erlang planning network: An iterative model-based reinforcement learning with multi-perspective. Pattern Recognition, 2022, 128: 108668. – Cited by 27 articles.

Zhang L, He Z, Zhao Y, et al. Reinforcement Learning-based Control of Robotic Manipulators. Journal of Robotics, 2023, 12(3): 112-121. – Cited by 19 articles.

He Z, Zhao W, Zhang L, et al. Multi-Agent Deep Reinforcement Learning in Dynamic Environments. Artificial Intelligence Review, 2022, 55(2): 456-472. – Cited by 24 articles.

Chen C, He Z, Qiu W, et al. Optimal Control for Nonlinear Systems Using Reinforcement Learning. Control Theory and Applications, 2021, 59(4): 553-566. – Cited by 18 articles.

Conclusion

Zhiqiang He’s contributions to AI and reinforcement learning, coupled with his practical experience and research output, position him as a promising researcher in the field. His work not only advances the academic understanding of intelligent control but also finds applications in industry, where AI solutions are critical to technological development. By consistently pushing for excellence in his projects, he demonstrates qualities that make him a deserving candidate for the “Best Researcher Award.” His trajectory reflects a commitment to innovation, making him an asset to the research community and a potential leader in future AI advancements.

ANUJA BHARGAVA | Artificial Intelligence | Most Cited Paper Award

Assist Prof Dr. ANUJA BHARGAVA | Artificial Intelligence | Most Cited Paper Award

Assistant Professor GLA University India

Dr. Anuja Bhargava is an accomplished academic and researcher, currently serving as an Assistant Professor at GLA University, Mathura. With a Ph.D. in Electronics and Communication Engineering, she specializes in Digital Signal Processing, VLSI, and Artificial Intelligence. Dr. Bhargava has a wealth of teaching experience and has published extensively in renowned journals and conferences. Her dedication to education and research has earned her a prominent place in her field.

Profile

Scopus

Education 🎓

Dr. Anuja Bhargava earned her Ph.D. in Electronics and Communication Engineering from GLA University, Mathura, where she conducted groundbreaking research on “Quality Evaluation of Fruits using Image Processing.” She holds a Master of Technology in Digital Communication from Uttrakhand Technical University and a Bachelor of Engineering in Electronics and Communication Engineering from Modi Institute of Technology, Kota, both with first-class honors.

Experience 🏫

Dr. Bhargava’s academic journey includes roles as Assistant Professor at GLA University since October 2021, and previously at Gurukul Institute of Engineering & Technology and Maharishi Arvind International Institute of Technology. Her extensive teaching experience spans over a decade, focusing on various aspects of electronics and communication engineering.

Research Interests 🔍

Dr. Bhargava’s research interests are diverse and include Digital Signal Processing, Very Large Scale Integration (VLSI), Control Systems, Signal and Systems, Electromagnetic Field Theory, Microprocessors, and Basic Electrical and Electronics. She is particularly interested in the application of Artificial Intelligence in these domains.

Awards 🏆

Dr. Anuja Bhargava has been recognized for her contributions to academia and research with various awards and nominations. She has served as a keynote speaker at international conferences and received accolades for her innovative research and teaching methodologies.

Publications Top Notes 📚

Gupta D, Bhargava A, et al. “Deep Learning-Based Truthful and Deceptive Hotel Reviews.” Sustainability, 2024, link, cited by articles.

Bhargava A, et al. “Plant Leaf Disease Detection, Classification and Diagnosis using Computer Vision and AI: A Review.” IEEE Access, 2024, link, cited by articles.

Sachdeva A, Bhargava A, et al. “A CNTFET based stable, single ended 7T SRAM cell with improved write operation.” Physica Scripta, 2024, link, cited by articles.

Bhargava A, et al. “Machine learning & computer vision-based optimum black tea fermentation detection.” Multimed Tools Appl, 2023, link, cited by articles.

Sharma A, Bhargava A, et al. “Multi-level Segmentation of Fruits Using Modified Firefly Algorithm.” Food Anal. Methods, 2022, link, cited by articles.