Mohammad Javad Mahmoodabadi | AI Engineering | Best Paper Award

Assoc. Prof. Dr. Mohammad Javad Mahmoodabadi | AI Engineering | Best Paper Award

Assoc. Prof. Dr. Mohammad Javad Mahmoodabadi | AI Engineering – Associate Professor at Sirjan University of Technology, Iran

Dr. Mohammad Javad Mahmoodabadi is an accomplished academic and researcher, currently serving as an Associate Professor in the Department of Mechanical Engineering at Sirjan University of Technology, Iran. With an impressive track record in mechanical engineering and control theory, Dr. Mahmoodabadi has made significant contributions to the fields of optimization algorithms, machine learning, and mechanical design. He is highly regarded for his innovative approaches in robotics, control engineering, and computational methods. His research has been widely published and cited, establishing him as a leader in his area. Dr. Mahmoodabadi has also played an instrumental role in mentoring graduate students, guiding them through cutting-edge research in nonlinear systems and robotics.

Professional Profile

ORCID | Scopus

Education

Dr. Mahmoodabadi’s educational background reflects a solid foundation in mechanical engineering. He earned his Ph.D. in Mechanical Engineering from the University of Guilan, Iran, in 2012. His dissertation focused on the multi-objective optimization of linear and nonlinear controllers, combining powerful optimization techniques such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). During his Ph.D., Dr. Mahmoodabadi achieved excellent academic performance, earning a GPA of 18.80 out of 20 and a dissertation grade of 19 out of 20. Prior to this, he completed his Master’s degree in Mechanical Engineering at Shahid Bahonar University of Kerman, Iran, where his thesis dealt with elasto-static problems using meshless methods. His academic achievements have provided him with a deep understanding of both theoretical and applied mechanics, which have been pivotal in his research career.

Experience

Dr. Mahmoodabadi’s academic career spans over a decade, during which he has held several important positions. After earning his Ph.D., he served as an Assistant Professor at Sirjan University of Technology from 2012 to 2019, before advancing to the role of Associate Professor. Throughout his career, he has taught various undergraduate and graduate courses, including robotics, control of robots, linear control, fuzzy logic, and optimization. His extensive teaching experience in mechanical engineering and related disciplines has earned him recognition for his ability to convey complex concepts with clarity. In addition to his teaching roles, Dr. Mahmoodabadi has served as the head of the Department of Mechanical Engineering and the Graduate Student Office at his university. His leadership has contributed to the development of academic programs and research initiatives within the department.

Research Interests

Dr. Mahmoodabadi’s research interests are diverse, with a primary focus on control theory, machine learning, computational methods, and optimization algorithms. He has worked on various topics such as adaptive robust control, fuzzy logic systems, and multi-objective optimization in the context of nonlinear dynamic systems. His research also extends to robotics, where he has developed novel control strategies for autonomous systems. Additionally, Dr. Mahmoodabadi’s work on mechanical design and analysis of complex systems has led to innovative solutions in both theoretical and applied engineering. His approach integrates computational techniques with practical applications, particularly in optimization and control engineering.

Awards

Throughout his career, Dr. Mahmoodabadi has received numerous accolades for his contributions to research and teaching. His excellence in academic leadership and groundbreaking research has earned him recognition within his institution and the broader academic community. Notably, his work in the development of control algorithms and optimization methods has received significant attention from his peers, reflected in his high citation count and his role as a mentor to graduate students. Although Dr. Mahmoodabadi has not explicitly listed awards in the traditional sense, his impact on the academic and research community through his publications, patents, and leadership roles can be considered as a testament to his achievements.

Publications

M.J. Mahmoodabadi, N.R. Babak, Pareto optimum design of an adaptive robust backstepping controller for an unmanned aerial vehicle, Asian Journal of Control (2022). 📚
R. Abedzadeh Maafi, S. Etemadi Haghighi, M.J. Mahmoodabadi, A novel multi-objective optimization algorithm for Pareto design of a fuzzy full state feedback linearization controller applied on a ball and wheel system, Transactions of the Institute of Measurement and Control 44 (7) (2022), 1388–1409. 🛠
M.J. Mahmoodabadi, S. Hadipour Lakmesari, Optimal design of an adaptive robust controller using a multi-objective artificial bee colony algorithm for an inverted pendulum system, Transactions of the Canadian Society for Mechanical Engineering 46 (1) (2022), 89–102. 📈
S.H. Lakmesari, M.J. Mahmoodabadi, Adaptive sliding mode control of HIV-1 infection model, Informatics in Medicine Unlocked 25 (2021), 100703. 💡
M.J. Mahmoodabadi, Moving least squares approximation-based online control optimized by the team game algorithm for Duffing-Holmes chaotic problems, Cyber-Physical Systems 7 (2) (2021), 1-21. ⚙️
M.J. Mahmoodabadi, A.R. Nemati, A new optimum numerical method for analysis of nonlinear conductive heat transfer problems, Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (5) (2021), 1-8. 🔥
R. Abedzadeh Maafi, S. Etemadi Haghighi, M.J. Mahmoodabadi, Pareto optimal design of a fuzzy adaptive hierarchical sliding-mode controller for an XZ inverted pendulum system, IETE Journal of Research (2021). 🔄

Conclusion

Dr. Mohammad Javad Mahmoodabadi’s academic and research career exemplifies excellence in mechanical engineering and control systems. His innovative work in optimization algorithms, machine learning, and mechanical design has earned him recognition as a leader in his field. With a strong publication record and significant contributions to the academic community, he is a well-deserving candidate for the “Best Researcher Award.” His ability to blend theoretical advancements with practical applications, along with his mentorship of future researchers, positions him as a key figure in the development of engineering solutions for complex systems. Dr. Mahmoodabadi’s dedication to advancing knowledge, combined with his academic leadership and impactful research, makes him an outstanding nominee for this prestigious award.

Arturo Benayas Ayuso | Generative Artificial Intelligence | Best Researcher Award

Prof. Arturo Benayas Ayuso | Generative Artificial Intelligence | Best Researcher Award

PhD Candidate at Polytechnic University of Madrid, Spain

Arturo Benayas Ayuso is a highly skilled naval architect with over two decades of experience in naval shipbuilding, digitization, and PLM (Product Lifecycle Management) systems integration. Known for his contributions to advancing digital solutions in the naval sector, he currently leads the integration efforts for NAVANTIA’s “El Cano” platform, which leverages cutting-edge technologies under the Industry 4.0 paradigm. This platform integrates complex processes in ship design, construction, and maintenance, marking a significant stride in naval digitization. Arturo is recognized for his leadership, technical expertise, and commitment to continuous improvement, which have consistently contributed to both national defense and international maritime innovation. His career reflects a dynamic blend of hands-on expertise, theoretical knowledge, and thought leadership within his field.

Profile

ORCID

Education

Arturo’s educational background is grounded in naval architecture, with a Master’s degree from the prestigious Universidad Politécnica de Madrid. His specialized training in marine motors provided him with a strong foundation for understanding the technical demands of naval engineering. Currently, Arturo is pursuing a PhD focused on IoT applications in ship design, construction, and management, further expanding his research in digitalization and its transformative impacts on the naval industry. His academic pursuits are complemented by numerous advanced courses in PLM platforms, machine learning, and materials science, reflecting his commitment to staying at the forefront of technological advancements relevant to his field.

Professional Experience

Arturo’s professional career spans pivotal roles in renowned engineering firms and projects within the naval and aerospace industries. His experience includes serving as a Technical Account Manager, Solution Architect, and Associate Manager, where he has spearheaded complex PLM integrations, notably in projects such as the Spanish Navy’s S80P submarine and the collaborative development of the Royal Navy’s CVF program. His role as Integration Lead for the “El Cano” platform exemplifies his capability to manage large teams, oversee end-to-end PLM implementations, and introduce digital solutions that optimize naval operations on an international scale. Throughout his career, Arturo has contributed to innovative projects, ensuring seamless transitions across software platforms and providing critical support for project management in challenging environments.

Research Interests

Arturo’s research interests lie at the intersection of naval architecture, digital transformation, and the Internet of Things (IoT). His doctoral research focuses on applying IoT to streamline and enhance various stages of ship design, manufacturing, and management. By leveraging data analytics, he explores ways to optimize shipbuilding efficiency and reduce costs. Arturo is also passionate about cybersecurity in IoT networks, recognizing the importance of robust security measures in protecting sensitive maritime operations. Additionally, he has an interest in machine learning and its potential applications in automating design processes, which could significantly advance naval engineering and shipyard productivity.

Awards and Recognitions

While Arturo has not received specific awards to date, his role as a thought leader and influential practitioner in naval PLM integration has earned him considerable recognition in his field. His significant contributions to NAVANTIA’s “El Cano” platform have been widely regarded as a benchmark for digital transformation within the naval industry. Furthermore, his insights on naval digitization and IoT applications in shipbuilding have been published in respected journals and presented at international conferences. These accomplishments underscore his impact on the industry and his commitment to innovation.

Publications

Benayas Ayuso, A. & Cebollero, A. (2011). “Integrated Development Environment in Shipbuilding Computer Systems.” ICAS Conference Paper. Cited by 17.
Benayas-Ayuso, A., & Pérez Fernández, R. (2018). “Automated/Controlled Storage for an Efficient MBOM Process in the Shipbuilding Managing the IoT Technology.” RINA Smart Ship Technology. Cited by 22.
Pérez Fernández, R., & Benayas-Ayuso, A. (2018). “Data Management for Smart Ship or How to Reduce Machine Learning Cost in IoS Applications.” RINA Smart Ship Technology. Cited by 18.
Benayas-Ayuso, A., & Pérez Fernández, R. (2019). “What does the Shipbuilding Industry Expect from the CAD/CAM/CAE Systems in the Next Years?” Naval Architect Magazine. Cited by 13.
Benayas Ayuso, A. (2021). “Internet of Things Cybersecurity – Blockchain as First Securitisation Layer of an IoT Network.” In Introduction to IoT in Management Science and Operations Research. Cited by 25.

Conclusion

Arturo Benayas Ayuso’s career exemplifies a blend of practical expertise and research-driven innovation. His contributions to naval digitalization, particularly through his work on the “El Cano” platform, highlight his commitment to integrating advanced technologies in shipbuilding. Arturo’s focus on IoT and cybersecurity, coupled with his passion for teaching, positions him as a forward-thinking leader in his field. As he continues to contribute to the academic and professional spheres, his research has the potential to reshape naval engineering, making him a strong candidate for the Best Researcher Award. His work reflects a dedication to innovation, resilience in navigating complex projects, and a vision for the future of naval architecture and digital integration.