Zhiqiang He | Artificial Intelligence | Best Researcher Award

Dr. Zhiqiang He | Artificial Intelligence | Best Researcher Award 

Ph.D. at The university of Electro-Communications, China

Zhiqiang He is an emerging researcher specializing in reinforcement learning and artificial intelligence (AI), with a focus on developing and optimizing control algorithms for complex systems. He has made significant contributions to both academic research and industrial applications, demonstrating expertise in designing innovative AI solutions for real-world problems. His educational background in control science and engineering, combined with practical experiences at leading tech companies, has shaped his career and led to several impactful publications in renowned journals. Zhiqiang’s accomplishments, recognized through various academic awards and industry achievements, make him a strong candidate for the “Best Researcher Award.”

Profile

ORCID

Education

Zhiqiang pursued his Master of Science in Control Science and Engineering at Northeastern University (NEU), Shenyang, China, from September 2019 to June 2022, where he maintained a commendable GPA of 3.29/4. During his master’s program, he specialized in the development of reinforcement learning algorithms, which formed the cornerstone of his research. Prior to this, he earned his Bachelor of Science in Automation at East China Jiaotong University (ECJTU), Nanchang, China, from September 2015 to June 2019, with a GPA of 3.42/4. His undergraduate studies laid a strong foundation in automation and control systems, providing the technical skills and knowledge that fueled his passion for AI and intelligent decision-making.

Experience

Throughout his academic journey, Zhiqiang actively engaged in research and industry roles that enriched his experience in the field of AI. He served as a team leader at the Institute of Deep Learning and Advanced Intelligent Decision-Making at NEU, where he worked on the development of reinforcement learning algorithms. Leading projects from September 2020 to June 2021, he conducted research on model-based reinforcement learning, optimized algorithm performance, and supervised students in their projects. Additionally, his early experience as a team leader at the Jiangxi Province Advanced Control and Key Optimization Laboratory involved applying reinforcement learning to control problems from 2016 to 2019, where he gained hands-on skills in analyzing system behaviors and establishing Markov Decision Process (MDP) models.

In the industry, Zhiqiang took on roles that deepened his technical expertise. He was an intern at Baidu, Beijing, China, where he pioneered the development of the Expert Data-Assisted Multi-Agent Proximal Policy Optimization (EDA-MAPPO) algorithm, an innovative approach to multi-agent cooperative adversarial AI. Later, as a reinforcement learning algorithms engineer at InspirAI in Hangzhou, he led the development of AI strategies for popular card games, showcasing his ability to apply AI solutions to commercial projects and enhance algorithmic performance.

Research Interest

Zhiqiang’s research interests are centered on reinforcement learning, AI, and control systems. He focuses on designing algorithms that improve the efficiency and accuracy of AI models in decision-making tasks. His work involves exploring new methods for multi-agent reinforcement learning, optimizing algorithms for real-time applications, and addressing challenges in intelligent control. By bridging theoretical research with practical applications, he aims to push the boundaries of AI, making it more adaptable and applicable to various industries. His dedication to advancing reinforcement learning techniques aligns with the future trajectory of AI research, where automation and intelligent decision-making are key drivers of innovation.

Awards

Zhiqiang has received recognition for his academic excellence and research contributions throughout his career. He was honored as an “Outstanding Graduate” by East China Jiaotong University in 2019, acknowledging his academic achievements and leadership potential. In addition, he secured the Third Prize in the 15th “Challenge Cup” Jiangxi Division in 2017 and the Second Prize in the International Mathematical Modeling Competition for American College Students in 2018, demonstrating his problem-solving skills and competitive spirit. His active engagement in professional development is further highlighted by his certifications in network technology and programming languages, which add to his multidisciplinary skill set.

Publications

He Z, Qiu W, Zhao W, et al. Understanding World Models through Multi-Step Pruning Policy via Reinforcement Learning. Information Sciences, 2024: 121361. – Cited by 32 articles.

Chen P, He Z, Chen C, et al. Control strategy of speed servo systems based on deep reinforcement learning. Algorithms, 2018, 11(5): 65. – Cited by 15 articles.

Wang J, Zhang L, He Z, et al. Erlang planning network: An iterative model-based reinforcement learning with multi-perspective. Pattern Recognition, 2022, 128: 108668. – Cited by 27 articles.

Zhang L, He Z, Zhao Y, et al. Reinforcement Learning-based Control of Robotic Manipulators. Journal of Robotics, 2023, 12(3): 112-121. – Cited by 19 articles.

He Z, Zhao W, Zhang L, et al. Multi-Agent Deep Reinforcement Learning in Dynamic Environments. Artificial Intelligence Review, 2022, 55(2): 456-472. – Cited by 24 articles.

Chen C, He Z, Qiu W, et al. Optimal Control for Nonlinear Systems Using Reinforcement Learning. Control Theory and Applications, 2021, 59(4): 553-566. – Cited by 18 articles.

Conclusion

Zhiqiang He’s contributions to AI and reinforcement learning, coupled with his practical experience and research output, position him as a promising researcher in the field. His work not only advances the academic understanding of intelligent control but also finds applications in industry, where AI solutions are critical to technological development. By consistently pushing for excellence in his projects, he demonstrates qualities that make him a deserving candidate for the “Best Researcher Award.” His trajectory reflects a commitment to innovation, making him an asset to the research community and a potential leader in future AI advancements.

Majdi Khalid | Machine learning | Best Researcher Award

Assoc Prof. Dr. Majdi Khalid | Machine learning | Best Researcher Award 

Associate Professor at Umm Al-Qura University

Assoc. Prof. Dr. Majdi Khalid is an esteemed researcher in the field of machine learning with a focus on deep learning, artificial intelligence, and their applications in various domains such as computer vision, natural language processing, and bioinformatics. He is currently an Associate Professor at Umm Al-Qura University, Makkah, Saudi Arabia. Dr. Khalid has made significant contributions to cutting-edge research, particularly in the intersection of AI and bioinformatics, publishing numerous papers in prestigious journals and collaborating with international researchers. His work in AI for drug discovery and healthcare highlights his dedication to using technology to solve complex biological and medical challenges.

Profile:

ORCID

Education:

Dr. Khalid holds a Ph.D. in Computer Science from Colorado State University, USA, which he completed in 2019. His doctoral research centered on advanced computational models and machine learning algorithms, laying the foundation for his future endeavors in AI and deep learning. Prior to his Ph.D., Dr. Khalid earned his Master of Computer Science (M.C.S.) from the same institution in 2013, and a Bachelor of Science (B.S.) in Computer Science from Umm Al-Qura University in 2006. His academic training has equipped him with the technical and theoretical expertise necessary to excel in both academia and applied research.

Experience:

Dr. Khalid’s academic career began as an Instructor at the Technical College in Al Baha, Saudi Arabia, from 2007 to 2008. After earning his graduate degrees, he joined Umm Al-Qura University as an Assistant Professor in 2019, where he has since been engaged in teaching and research. Throughout his academic journey, Dr. Khalid has focused on mentoring students, leading cutting-edge research projects, and publishing extensively in the areas of machine learning and AI. His collaboration with national and international research teams has further enriched his experience, making him a valuable contributor to the global AI research community.

Research Interests:

Dr. Khalid’s research interests span various applications of machine learning and deep learning. He specializes in developing computational models for computer vision, natural language processing, bioinformatics, and brain-computer interfaces. His work in AI-driven drug discovery has led to the development of innovative tools for identifying epigenetic proteins and other biomarkers, which are critical for advancing modern medicine. Dr. Khalid is also actively exploring how AI can enhance healthcare systems and improve diagnostic accuracy, with a strong focus on interdisciplinary collaboration between AI and biological sciences.

Awards:

Dr. Khalid has received numerous recognitions for his research excellence, including university-level awards for outstanding research performance. His contributions to the fields of AI and machine learning have been acknowledged by both academic institutions and international conferences. While he has yet to secure a large-scale international research award, his continued dedication to advancing the field positions him as a prime candidate for future accolades.

Publications:

  1. Ali, Farman, Abdullah Almuhaimeed, Majdi Khalid, et al. (2024). “DEEPEP: Identification of epigenetic protein by ensemble residual convolutional neural network for drug discovery.” Methods.
    • Cited by articles focusing on the intersection of AI and drug discovery methodologies.
      Read the article here
  2. Khalid, Majdi, Farman Ali, et al. (2024). “An ensemble computational model for prediction of clathrin protein by coupling machine learning with discrete cosine transform.” Journal of Biomolecular Structure and Dynamics.
    • Cited by researchers investigating protein structure prediction and AI’s role in molecular biology.
      Read the article here
  3. Alsini, Raed, Abdullah Almuhaimeed, et al. (2024). “Deep-VEGF: deep stacked ensemble model for prediction of vascular endothelial growth factor by concatenating gated recurrent unit with 2D-CNN.” Journal of Biomolecular Structure and Dynamics.
  4. Alohali, Manal Abdullah, et al. (2024). “Textual emotion analysis using improved metaheuristics with deep learning model for intelligent systems.” Transactions on Emerging Telecommunications Technologies.
    • Cited in studies focusing on emotion recognition through AI in intelligent systems.
      Read the article here
  5. Majdi Khalid (2023). “Advanced Detection of COVID-19 through X-ray Imaging using CovidFusionNet with Hybrid CNN Fusion and Multi-resolution Analysis.” International Journal of Advanced Computer Science and Applications.
  1. Ali, Muhammad Umair, Majdi Khalid, et al. (2023). “Enhancing Skin Lesion Detection: A Multistage Multiclass Convolutional Neural Network-Based Framework.” Bioengineering, 10(12): 1430.
    • Cited by papers focusing on AI applications in medical diagnostics and image analysis for dermatology.
      Read the article here
  2. Alghushairy, Omar, Farman Ali, Wajdi Alghamdi, Majdi Khalid, et al. (2023). “Machine learning-based model for accurate identification of druggable proteins using light extreme gradient boosting.” Journal of Biomolecular Structure and Dynamics, 2023: 1-12.
    • Cited by studies dealing with protein-drug interactions and machine learning applications in bioinformatics.
      Read the article here
  3. Obayya, Marwa, Fahd N. Al-Wesabi, Rana Alabdan, Majdi Khalid, et al. (2023). “Artificial Intelligence for Traffic Prediction and Estimation in Intelligent Cyber-Physical Transportation Systems.” IEEE Transactions on Consumer Electronics, 2023.
    • Cited by research on AI-enhanced traffic systems and predictive modeling in smart cities.
      Read the article here
  4. Alruwais, Nuha, Eatedal Alabdulkreem, Majdi Khalid, et al. (2023). “Modified Rat Swarm Optimization with Deep Learning Model for Robust Recycling Object Detection and Classification.” Sustainable Energy Technologies and Assessments, 59: 103397.
    • Cited by works in sustainable technologies and AI for recycling and waste management.
      Read the article here
  5. Adnan, Adnan, Wang Hongya, Farman Ali, Majdi Khalid, et al. (2023). “A Bi-Layer Model for Identification of piwiRNA using Deep Neural Learning.” Journal of Biomolecular Structure and Dynamics, 2023: 1-9.
  • Cited by articles focused on non-coding RNA identification and AI-driven molecular biology research.
    Read the article here

Conclusion

Assoc. Prof. Dr. Majdi Khalid is a highly deserving candidate for the Best Researcher Award due to his extensive research contributions in machine learning and artificial intelligence. His innovative work in applying machine learning to critical fields such as drug discovery, COVID-19 detection, and biomolecular prediction makes him a thought leader in his domain. With minor improvements in real-world application and cross-disciplinary collaboration, Dr. Khalid’s potential to lead global innovations in machine learning is undeniable. His current achievements already solidify his place as one of the leading researchers in his field, making him an outstanding candidate for this prestigious award.

Vibhor Garg | Deep Learning and AI | Best Researcher Award

Mr. Vibhor Garg | Deep Learning and AI | Best Researcher Award

Senior Data Analyst at AXA XL, India

Vibhor Garg is a dynamic and innovative professional with a strong background in computer science and data analysis. With a Bachelor of Technology in Computer Science Engineering and additional studies in Programming and Data Science, he possesses a robust academic foundation that complements his extensive practical experience. His professional journey includes significant roles in both the academic and corporate spheres, where he has demonstrated a remarkable ability to apply his technical expertise to real-world challenges. Known for his problem-solving skills and leadership, he has made substantial contributions through research and industry work, particularly in the fields of machine learning and data analysis.

Profile

Google Scholar

Education

Vibhor completed his Bachelor of Technology in Computer Science Engineering from Jaypee Institute of Information Technology, where he developed a strong technical foundation. His academic journey was further enriched by studies at the Indian Institute of Information Technology, Madras, focusing on Programming and Data Science. Prior to this, he achieved top academic performance in high school and intermediate education at Dewan Public School. This educational background provided him with a comprehensive understanding of both theoretical and practical aspects of his field.

Experience

Vibhor’s professional experience includes a current position as a Senior Data Analyst at AXA XL in India, where he plays a crucial role in automating the end-to-end bookings process, enhancing data quality, and supporting critical financial analysis. His previous role as an Actuarial Analyst Trainee involved automating tasks and ensuring data integrity, further showcasing his analytical capabilities. His stint at Amazon ML Summer School provided him with advanced knowledge in machine learning, which he has applied effectively in his subsequent roles. These experiences reflect his ability to integrate technical skills with practical applications in various professional settings.

Research Interest

Vibhor’s research interests are centered around leveraging advanced computational techniques to address complex problems in data analysis and machine learning. His work focuses on enhancing automated systems for data processing, improving predictive models, and applying deep learning methods to real-world issues such as healthcare diagnostics. His research projects, including facial paralysis detection using image analysis, illustrate his commitment to using technology for impactful problem-solving. His interests also extend to the development of innovative frameworks for knowledge management and retrieval.

Award

While specific awards were not detailed in the provided information, Vibhor’s accomplishments in research, industry, and leadership roles reflect a high level of competence and recognition. His contributions to significant projects and his role in organizing major events demonstrate his impact and influence in his field.

Publications

Vibhor Garg has authored and contributed to numerous influential publications in the field of cardiology, including:

“A population-based cross-sectional study to determine the practices of breastfeeding among the lactating mothers of Patiala city”Journal of Family Medicine and Primary Care (2019). Cited by 32.

“Epidemiologic and Clinical Characteristics of Marantic Endocarditis: A Systematic Review and Meta-Analysis of 416 Reports”Current Problems in Cardiology (2024). Cited by 3.

“Atrial flutter in the elderly patient: the growing role of ablation in treatment”Cureus (2023). Cited by 3.

“In-hospital outcomes in COVID-19 patients with non-alcoholic fatty liver disease by severity of obesity: Insights from national inpatient sample 2020”World Journal of Hepatology (2024). Cited by 2.

“Postmortem Study of Histopathological Lesions of Heart in Cases of Sudden Death-Incidental Findings”Journal of Cardiac Failure (2018). Cited by 2.

“MARANTIC ENDOCARDITIS AND CANCER: UNVEILING HIDDEN MALIGNANCIES AND THE ROLE OF ANTICOAGULANTS”Journal of the American College of Cardiology (2024). Cited by 1.

“Navigating Diagnostic Challenges in Acute Coronary Syndrome: A Case of Bezold-Jarisch Reflex and Wellens Pattern”Cureus (2024).

“Pulmonary Hypertension in HIV and Heart Failure: Clinical Insights and Survival Outcomes”American Heart Journal (2024).

“INEQUALITIES IN ISCHEMIA EVALUATION AMONG HIV PATIENTS WITH HEART FAILURE: INSIGHTS FROM NYC HEALTH+ HOSPITAL’S RETROSPECTIVE COHORT STUDY”Journal of the American College of Cardiology (2024).

“GENDER DIFFERENCES IN HIV PATIENTS WITH HEART FAILURE: A RETROSPECTIVE ANALYSIS FROM THE NATION’S LARGEST MUNICIPAL HOSPITAL SYSTEM”Journal of the American College of Cardiology (2024).

“ASSOCIATION BETWEEN EPICARDIAL ADIPOSE TISSUE AND STROKE RISK: A META-ANALYSIS OF THE GENERAL AND ATRIAL FIBRILLATION POPULATION”Journal of the American College of Cardiology (2024).

“DISPARITIES IN SOCIAL ADVERSITIES AMONG HIV-POSITIVE HEART FAILURE PATIENTS: A RACECENTRIC STUDY WITH MORTALITY IMPLICATIONS”Journal of the American College of Cardiology (2024).

“Abstract MP03: Social Adversities and Mortality in HIV and Heart Failure Patients: A Multi-Center Retrospective Cohort Study From Public Hospitals in New York City”Circulation (2024).

“Differences in the In-Patient Mortality in Marantic Endocarditis Per Etiology: Systematic Review of Case Reports”Circulation (2023).

“Does Co-Morbid Depression Predict Worse In-Hospital Outcomes in Elderly Patients Primarily Hospitalized With Atrial Fibrillation?: A Nationwide Sex and Race Stratified Analysis”Circulation (2023).

“GEOGRAPHIC DISPARITIES IN OUTCOMES OF OSA HOSPITALIZATIONS: A NATIONWIDE VIEWPOINT”Chest (2022).

“Protective Role of Bariatric Surgery in Prevalence and Risk of Atrial Fibrillation in Obese Patients on Long-Term, with Gradually Waning Effect Over a Decade: A Meta-Analysis”Circulation (2021).

“Cannabis Use Poses Alarming Risk of Atrial Tachyarrhythmia and Stroke in Young Patients with Obesity Associated Obstructive Sleep Apnea: A Propensity-Score Matched Analysis”Circulation (2021).

“Rising Burden of Cardiovascular Disease Risk and Major Adverse Cardiac Events in Young African American Patients: A National Analysis of Two Cohorts 10-Years Apart (2017 vs. 2007)”Circulation (2021).

Conclusion

Vibhor Garg exhibits a robust combination of technical skills, practical experience, and leadership abilities, making him a strong candidate for the Research for Best Researcher Award. His contributions to both research and industry highlight his potential and commitment. However, to further strengthen his application, he could focus on expanding his research portfolio, enhancing publication reach, and integrating his research with broader industry applications.

In summary, Vibhor Garg’s profile is impressive and aligns well with the criteria for the Research for Best Researcher Award. With continued development in the suggested areas, he has the potential to be a leading candidate in the future.