Liana Lucchetti | Materials | Best Researcher Award

Prof. Liana Lucchetti | Materials | Best Researcher Award 

Prof. Liana Lucchetti | Materials | Associate Professor at Polytechnic University of Marche | Italy

Prof. Liana Lucchetti is an Associate Professor of Physics at Università Politecnica delle Marche, where she leads the Laboratory “Optics of Soft Matter.” She is internationally recognized for her pioneering research in liquid crystal physics and soft matter optics. With more than a hundred peer-reviewed publications, numerous invited talks, and leadership in both academic and professional communities, she has made transformative contributions to the fields of nonlinear optics, ferroelectric nematic materials, and complex fluid dynamics. Her research has been featured on journal covers and highlighted by scientific media outlets, further demonstrating her international impact. Beyond research, Prof. Liana Lucchetti plays a critical role as an academic mentor, conference organizer, and editorial board member, shaping the direction of scientific inquiry while fostering the next generation of scholars.

Academic Profile

ORCID  | Scopus

Education

Prof. Liana Lucchetti completed her doctoral studies in Physics at the University of Bologna, where her research explored light-induced memory effects in liquid crystalline materials. This early training in fundamental physics established a strong foundation for her subsequent academic career. Through advanced research in optics and soft matter, she has continuously expanded her scientific expertise, combining experimental physics with interdisciplinary approaches. Her academic journey reflects both rigorous specialization and a commitment to developing innovative methodologies in applied photonics.

Experience

Prof. Liana Lucchetti has advanced from early research fellowships to her current position as Associate Professor of Physics, consistently expanding her leadership and academic influence. She heads the Laboratory “Optics of Soft Matter,” where she oversees high-level projects in collaboration with both national and international institutions. She has delivered invited seminars, keynote lectures, and specialized training courses at major international conferences and universities, contributing to global scientific exchange. In addition, she has supervised numerous postdoctoral researchers, doctoral candidates, and master’s students, ensuring strong continuity in research innovation and knowledge transfer. Her service to the scientific community includes acting as a reviewer for leading journals such as Nature Physics, PNAS, and Scientific Reports, while also serving on editorial boards and scientific committees of conferences.

Research Interest

Prof. Liana Lucchetti’s research spans a wide spectrum of topics in soft matter physics and optics. Her main interests include nonlinear optical properties of liquid crystals, hybrid liquid crystal-lithium niobate systems, and optical manipulation in anisotropic media. She has also advanced studies on the viscoelastic properties of DNA liquid crystals and on the electrowetting and wetting dynamics of complex fluids. Recently, her focus on ferroelectric nematic liquid crystals has attracted global attention, providing new insights into electromechanical instabilities and polarization phenomena. These areas of investigation not only advance fundamental physics but also open new pathways for technological applications in photonics, materials science, and bioengineering.

Award

Prof. Liana Lucchetti has received multiple awards and recognitions for her scientific contributions. She was named “Researcher of the Year” by Università Politecnica delle Marche in acknowledgment of her outstanding achievements. Several of her research articles have been selected for journal covers and highlighted in international scientific media, underscoring their significance to the broader optics and materials science communities. Her leadership roles in international conferences and scientific committees further demonstrate her professional recognition. She has consistently secured research funding and institutional awards, strengthening her position as a leading figure in soft matter and optical physics.

Selected Publication

  • “Optical phase conjugation and efficient wave front correction of weak light beams by dye doped liquid crystals,” published in 2003, with 95 citations.

  • “Surface alignment of ferroelectric nematic liquid crystals,” published in 2021, with 210 citations.

  • “Explosive electrostatic instability of ferroelectric liquid droplets on ferroelectric solid surfaces,” published in 2022, with 178 citations.

  • “Fluid superscreening and polarization following in confined ferroelectric nematics,” published in 2023, with 134 citations.

Conclusion

Prof. Liana Lucchetti is a distinguished scholar whose work in liquid crystal optics and soft matter physics has advanced the frontiers of scientific knowledge. Her contributions span fundamental theory, experimental breakthroughs, and interdisciplinary applications, with results published in leading international journals. She has combined research excellence with institutional leadership, extensive editorial service, and a strong record of mentoring, thereby influencing both academic communities and industrial applications. Her recognition through awards, invited talks, and high-impact publications demonstrates her status as a thought leader in physics. Looking forward, Prof. Liana Lucchetti is positioned to continue shaping the global research landscape through expanded international collaborations, pioneering investigations into ferroelectric nematic systems, and ongoing leadership in scientific organizations. Her career exemplifies the qualities of innovation, dedication, and international impact, making her a highly deserving nominee for this award.

Kseniia Grafskaia | Materials Science | Women Researcher Award

Ms. Kseniia Grafskaia | Materials Science | Women Researcher Award

Dr. Kseniia Nikolaevna Grafskaia is a dedicated researcher specializing in polymer science, functional materials, and self-assembled materials. With a strong academic background in applied mathematics and physics, she has contributed significantly to the study of amphiphilic wedge-shaped molecules and their applications in ion-selective membranes. Currently associated with Aramco Innovations in Moscow, Russia, she has actively worked on molecular recognition, polymer-like structures, and sustainable industrial materials. Her research spans multiple interdisciplinary areas, bridging fundamental science and industrial applications to enhance material sustainability and performance.

profile

orcid

Education

Dr. Grafskaia earned her PhD in Physical and Mathematical Sciences from the Moscow Institute of Physics and Technology in November 2020. Her doctoral research focused on the real-time study of amphiphilic wedge-shaped sulfonate molecules’ self-organization, contributing to the understanding of polymer-like structures. Prior to this, she obtained a Master’s degree in Applied Mathematics and Physics, where she investigated self-assembling amphiphilic molecules for ion-exchange membranes. She also holds a Bachelor’s degree with excellence in the same discipline, with a research emphasis on 3D simulations of mesomorphous structures in ion-exchange membranes.

Experience

Throughout her career, Dr. Grafskaia has been actively involved in both academic research and industry collaborations. Her work has resulted in six completed or ongoing research projects and four consultancy projects in collaboration with industrial plants. She has played a pivotal role in the development of low-toxicity polymer compositions for cable insulation, improving safety and sustainability. Additionally, she has contributed to polymer material design for advanced fuel cell ion-exchange membranes, enhancing renewable energy applications. Her expertise extends to optical microscopy studies for molecular recognition of synthetic tetramers, advancing fundamental knowledge in material science.

Research Interests

Dr. Grafskaia’s research interests focus on polymer science, functional materials, self-assembled materials, and liquid crystals. She is particularly engaged in the synthesis and study of macromolecules, investigating their applications in energy storage, membrane technology, and industrial materials. Her work on amphiphilic molecules and polymer-like structures has provided crucial insights into material self-organization, contributing to advancements in both academic and industrial settings. She continues to explore new methods for enhancing material properties and sustainability.

Awards

Dr. Grafskaia has been nominated for the Women Research Award, recognizing her outstanding contributions to materials science. Her innovations in polymer compositions and self-assembled materials have had a significant impact on sustainable industrial applications, earning her recognition in academic and professional circles.

Publications

Grafskaia K.N., Anokhin D.V. (2023). “Self-organization of amphiphilic wedge-shaped molecules in ion-selective membranes,” Journal of Applied Polymer Science, cited by 8 articles.

Grafskaia K.N. (2022). “Optical microscopy for studying molecular recognition of synthetic tetramers,” Materials Chemistry and Physics, cited by 6 articles.

Grafskaia K.N., Ivanov M.S. (2021). “Low-toxicity polymer compositions for cable insulation,” Industrial Polymer Journal, cited by 5 articles.

Grafskaia K.N. (2020). “Experimental chamber design for in-situ investigation of polymer structures,” Advanced Materials Research, cited by 4 articles.

Grafskaia K.N. (2019). “Wedge-shaped amphiphiles in fuel cell membranes,” Energy & Environmental Science, cited by 10 articles.

Grafskaia K.N., Petrov A.D. (2018). “Mesomorphous structure simulations in ion-exchange membranes,” Journal of Molecular Liquids, cited by 7 articles.

Grafskaia K.N. (2017). “Liquid crystalline behavior of functional polymers,” Soft Matter, cited by 9 articles.

Conclusion

Dr. Grafskaia Kseniia Nikolaevna’s exceptional academic background, groundbreaking research, and impactful industry collaborations make her a highly deserving candidate for the Women Researcher Award. Her contributions to polymer science and functional materials have advanced both scientific understanding and practical applications, particularly in sustainability and industrial safety. With numerous publications, patents, and industry partnerships, she has demonstrated a commitment to innovation and excellence in research. As a woman in a highly technical field, her achievements serve as an inspiration for future generations of female scientists. Recognizing her with this award would not only honor her remarkable contributions but also encourage further advancements in scientific research led by women.