Lijuan Zhang | Deep Learning | Best Researcher Award

Prof. Dr. Lijuan Zhang | Deep Learning | Best Researcher Award 

Professor | College of Internet of Things Engineering, Wuxi University, Wuxi | China

Research for Best Researcher Award Evaluation

Strengths for the Award

  1. Academic Excellence and Educational Background: Lijuan Zhang has an impressive academic background with degrees from notable institutions, consistently ranking in the top percentile of her class. Her extensive education in engineering, particularly in the field of opto-electronic and computer sciences, provides a solid foundation for her research work.
  2. Diverse and Relevant Research Contributions: Dr. Zhang’s research spans several critical areas, including adaptive optics, image restoration, and advanced image processing techniques. Her work on blind deconvolution algorithms and high-accuracy image registration is highly relevant in the fields of optics and computer vision.
  3. High Impact Publications: Dr. Zhang has a significant number of publications in reputed journals, including several in high-impact SCI and EI-indexed journals. Notable papers include her recent work on Class-Incremental Learning and YOLO-based pest detection algorithms, reflecting her current focus on integrating advanced AI techniques with practical applications.
  4. Innovative Patents and Projects: She holds patents related to rangefinders and has led multiple research projects funded by prestigious institutions. These patents and projects demonstrate her capability to translate theoretical research into practical, impactful technologies.
  5. Recognition and Honors: Dr. Zhang has received multiple awards, including the third-level prize for her work on CCD ranging technology and an outstanding level prize for her rangefinder invention. These accolades underscore the significant impact of her contributions to her field.
  6. Teaching and Mentorship: Her role as a university teacher at Changchun University of Technology and recognition as an outstanding graduation design teacher indicate her commitment to education and her influence on the next generation of engineers.

Areas for Improvement

  1. Broader Research Dissemination: While Dr. Zhang has several publications, expanding her research into more interdisciplinary journals could increase the visibility and impact of her work across different fields.
  2. Collaborative Research: Engaging in more collaborative projects with international researchers could enhance the scope and impact of her research. Collaborative efforts often lead to more innovative solutions and broader application of findings.
  3. Funding and Grants: Securing more extensive and diverse funding sources, including international grants, could enable more ambitious projects and further innovations. Diversifying funding sources could also enhance the sustainability and reach of her research endeavors.
  4. Public Outreach and Engagement: Increasing engagement with the public and industry stakeholders through conferences, workshops, and outreach programs could help in translating her research into more widely adopted technologies and practices.
  5. Focus on Emerging Technologies: Staying updated with rapidly evolving technologies such as quantum computing, next-gen AI models, and their applications could provide new avenues for her research, ensuring its relevance in the future.

Short Bio

Dr. Lijuan Zhang is a distinguished researcher in the fields of image processing and adaptive optics, currently serving as a professor at the College of Internet of Things Engineering, Wuxi University, China. With a career spanning over two decades, Dr. Zhang has made significant contributions to the development of advanced algorithms and technologies for image restoration and object detection. Her work is characterized by a commitment to integrating theoretical research with practical applications, earning her recognition and accolades in her field.

Profile

ORCID

Education

Dr. Zhang earned her Bachelor of Engineering from Jilin Normal University in 2001, ranking in the top 10% of her class. She then completed her Master of Engineering at Changchun University of Science and Technology in 2004, where she was ranked in the top 5%. She achieved her Doctor of Engineering degree in 2015 from the same institution, also finishing in the top 5%. Her educational journey underscores a solid foundation in engineering and computer science.

Experience

Since 2004, Dr. Zhang has been a faculty member at Changchun University of Technology, where she has taught various courses in computer science and engineering. Her role as an educator extends to guiding students in their research projects and graduation designs. Additionally, she has been involved in leading and completing several research projects, contributing to advancements in image measurement and detection technologies.

Research Interest

Dr. Zhang’s research interests primarily focus on adaptive optics, image restoration, and advanced image processing techniques. Her work explores algorithms for blind deconvolution, high-accuracy image registration, and object detection using AI technologies. Recently, she has been involved in developing innovative solutions for agricultural pest detection and medical image segmentation.

Awards

Dr. Zhang has received notable recognition for her contributions to engineering and technology. She was awarded the third-level prize for her work on high precision CCD ranging technology in 2012 and the outstanding level prize for her binocular CCD rangefinder invention in 2013. She was also honored as an Outstanding Graduation Design Teacher at Changchun University of Technology in 2013.

Publications

Zhang, L., Li, D., Su, W., Yang, J., & Jiang, Y. (2014). Research on Adaptive Optics Image Restoration Algorithm by Improved Expectation Maximization Method. Abstract and Applied Analysis. DOI: 10.1155/2014/781607 (Cited by: 54)

Zhang, L., Yang, J., Su, W., et al. (2014). Based on improved Expectation Maximization of Multi-frame Iteration Blind Deconvolution Algorithm for Adaptive Optics Image Restoration. Acta Armanebtarii, 35(11) (in Chinese) (Cited by: 32)

Zhang, L., Yang, J., Su, W., Wang, X., & Jiang, Y. (2013). Research on Blind Deconvolution Algorithm of Multi-Frame Turbulence Degraded Images. Journal of Information and Computational Science, 10(12) (Cited by: 27)

Zhang, L., Yang, J., Jiang, Y., et al. (2014). Research on Target Image Matching Algorithm for Binocular CCD Ranging. Laser & Optoelectronics Progress, 51(9) (in Chinese) (Cited by: 21)

Zhang, L., Yang, J., & Jiang, C. (2012). Image Restoration Based on Cross-correlative Blur Length Estimation. Computer Engineering, 9(20) (in Chinese) (Cited by: 19)

Zhang, L., Li, D., et al. (2012). High-accuracy Image Registration Algorithm Using B-splines. ICCSNT 2012 (Cited by: 15)

Zhang, L., Yang, J., et al. (2011). An Image Mosaic Algorithm Taking into Account Speed and Robustness. ICMEAT 2011 (Cited by: 13)

Zhang, L., Yang, X., et al. (2023). Class-Incremental Learning Based on Anomaly Detection. IEEE ACCESS, 2023.7 (SCI, Q2) (Cited by: 7)

Zhang, L., Zhao, C., et al. (2023). Pests Identification of IP102 by YOLOv5 Embedded with the Novel Lightweight Module. Agronomy, 2023.6 (SCI, Q1) (Cited by: 5)

Li, D., Yin, S., Lei, Y., Zhang, L., et al. (2023). Segmentation of White Blood Cells Based on CBAM-DC-UNet. IEEE Access, 2023.1 (SCI, Q2) (Cited by: 9)

Zhang, L., Liu, J., et al. (2022). MSAA-Net: A Multi-Scale Attention-Aware U-Net for Liver Segmentation. Signal, Image and Video Processing, 2022.7 (SCI, Q4) (Cited by: 4)

Zhang, L., Ding, G., et al. (2023). DCF-Yolov8: An Improved Algorithm for Aggregating Low-Level Features to Detect Agricultural Pests and Diseases. Agronomy, 2023.8 (Cited by: 3)

Zhang, L., Cui, H., et al. (2023). CLT-YOLOX: Improved YOLOX Based on Cross-Layer Transformer for Object Detection Method Regarding Insect Pest. Agronomy, 2023.8 (Cited by: 2)

Conclusion

Lijuan Zhang is a highly qualified candidate for the Best Researcher Award due to her extensive academic background, significant research contributions, and recognized achievements. Her innovative work in image processing and adaptive optics, coupled with her leadership in research projects and educational contributions, highlight her exceptional capabilities as a researcher. Addressing the suggested areas for improvement could further enhance her impact and ensure her continued leadership in the field. Overall, Dr. Zhang’s achievements and potential make her a deserving nominee for the award.

 

Moumita Chanda | Deep Learning | Best Researcher Award

Ms.Moumita Chanda | Deep Learning | Best Researcher Award

Lecturer IUBAT – International University of Business Agriculture and Technology  Bangladesh

Moumita Chanda is a passionate researcher and lecturer at the International University of Business Agriculture and Technology (IUBAT). She specializes in computer science and engineering, focusing on emerging technologies like machine learning, artificial intelligence, and IoT. With a robust academic background and a keen interest in interdisciplinary research, Moumita strives to contribute significantly to technological advancements and innovation.

Profile

Google Scholar

Education

🎓 Moumita Chanda earned her M.Sc. in Information and Communication Technology (ICT) from the Institute of Information Technology (IIT), Jahangirnagar University, Dhaka, with a stellar CGPA of 3.71/4.00, securing the 1st position among her peers in 2022-2023. She also holds a B.Sc. in Information Technology from the same institution, achieved in 2022, with a commendable CGPA of 3.53/4.00. Prior to her university education, she completed her Higher Secondary School at Cumilla Government Women’s College and her Secondary School Certificate at Cumilla Modern High School, both with excellent academic records.

Experience

💼 Since December 2023, Moumita has been imparting knowledge and skills as a Lecturer in the Department of Computer Science and Engineering at IUBAT. Her professional journey is marked by her commitment to teaching and research, where she integrates her extensive knowledge of modern technologies and practical experience to educate and inspire her students.

Research Interest

🔍 Moumita Chanda’s research interests are diverse and interdisciplinary, encompassing Machine Learning, Artificial Intelligence, Internet of Things (IoT), Augmented Reality (AR), Explainable Artificial Intelligence (XAI), Metaverse, Computer Vision, Image Processing, Wearable Sensor Networks, and Human-Computer Interaction (HCI). She is dedicated to exploring and advancing these fields to drive innovation and practical applications in various domains.

Awards and Achievements

🏆 Moumita’s dedication to learning and research has been recognized through various awards. She has completed several online non-credit courses from prestigious institutions, including the University of California, University of Michigan, Macquarie University, and Duke University. Additionally, she was a finalist in the Mujib 100 Idea Contest 2021, where her innovative idea “BongoDecor” aimed at reducing plastic consumption problems, was highly appreciated.

Publications

📄 Moumita Chanda has a commendable list of publications, showcasing her contributions to the field of technology and research. Some of her notable works include:

  • “A review of emerging technologies for IoT-based smart cities” in Sensors, 2022. Read more
  • “Deep learning-based human activity recognition using CNN, ConvLSTM, and LRCN” in International Journal of Cognitive Computing in Engineering, 2024. Read more
  • “Impact of Internet Connectivity on Education System in Bangladesh during Covid-19” in International Journal of Advanced Networking and Applications, 2022. Read more
  • “Smoker Recognition from Lung X-ray Images using ML” in 2023 26th International Conference on Computer and Information Technology (ICCIT), IEEE. Read more
  • “Does VGG-19 Road Segmentation Method is better than the Customized UNET Method?” Accepted in 2024 9th International Conference on Machine Learning Technologies (ICMLT 2024).

 

 

Fatemeh Golpayegani | Artificial Intelligence | Best Researcher Award

Dr. Fatemeh Golpayegani | Artificial Intelligence | Best Researcher Award 

Assistant Professor | University College Dublin | Ireland

📜 Short Bio:

Fatemeh Golpayegani is currently an Assistant Professor at the School of Computer Science, University College Dublin (UCD), where she contributes significantly to research and academic activities in the field of computer science. Her expertise lies in multi-agent systems, edge computing, and intelligent transport systems.

Profile:

SCOPUS

🎓 Education:

Fatemeh pursued her academic journey with a strong foundation in computer science:

  • Ph.D. in Computer Science (2013-2018)
    Trinity College Dublin, Dublin, Ireland
    Thesis Title: “Collaboration community formation in open systems for agents with multiple goals.”
    Supervised by Prof. Siobhan Clarke.
  • M.Sc. in Computer (Software) Engineering (2010-2012)
    Sharif University of Technology, Tehran, Iran
    Thesis Title: “Development of a process line engineering approach based on product line engineering methods for engineering agent-oriented methodologies.”
  • B.Sc. Hons in Computer (Software) Engineering (2006-2010)
    Alzahra University, Tehran, Iran

👩‍🏫 Experience:

Fatemeh has held various academic and professional roles:

  • Assistant Professor (Dec 2020 – Present)
    School of Computer Science, UCD, Dublin, Ireland
  • Postdoctoral Researcher (June 2018 – Jan 2019)
    CONNECT, School of Computer Science and Statistics, Trinity College Dublin, Ireland
  • Software Engineer (Sept 2010 – Aug 2013)
    ITOrbit, Tehran, Iran

🔍 Research Interest:

Her research interests encompass:

Multi-agent Systems, Edge Computing, Intelligent Transport Systems, Agent-based Modeling

🏆 Award:

Fatemeh Golpayegani is recognized as a member of the Young Academy of Ireland (2023-2027), highlighting her contribution to advancing research and cultural life in Ireland.

📚 Publications:

Fatemeh has contributed significantly to her field with numerous peer-reviewed publications. A selection of her notable works include:

Adaptation in Edge Computing: A review on design principles and research challenges
Published in ACM Transactions on Autonomous and Adaptive Systems, 2024. Cited by: 15

Handling uncertainty in self-adaptive systems: an ontology-based reinforcement learning model
Published in Journal of Reliable Intelligent Environments, 2023. Cited by: 20

Towards the Use of Hypermedia MAS and Microservices for Web Scale Agent-Based Simulation
Published in SN Computer Science, 2022.

Intelligent Shared Mobility Systems: A Survey on Whole System Design Requirements, Challenges and Future Direction
Published in IEEE Access, 2022.

Using Social Dependence to Enable Neighbourly Behaviour in Open Multi-agent Systems
Published in ACM Transactions on Intelligent Systems and Technology (TIST), 2019.

These publications underscore her research breadth and impact in areas such as adaptive systems, shared mobility, and multi-agent collaboration.

 

Kalpana Ponugoti | Machine Learning | Best Researcher Award

Dr. Kalpana Ponugoti | Machine Learning | Best Researcher Award

Assistant Professor  | AVN Institute of Engineering and Technology | India 

Short Biography

Dr. Kalpana Ponugoti is an accomplished academic with a strong focus on Computer Science and Engineering, specializing in cutting-edge technologies like Artificial Intelligence and Machine Learning. Currently serving as an Assistant Professor at AVN Institute of Engineering and Technology, she brings over 8 years of teaching experience and expertise in curriculum development, along with significant contributions as an industry professional and researcher in Salesforce development.

Profile

ORCID

Education

Dr. Kalpana completed her Ph.D. in Computer Science and Engineering from VELS University (VISTAS), Chennai, anticipated in May 2024. Prior to this, she earned her M.Tech in Computer Science from BKBG Institute of Technology and her B.Tech in Information Technology from Jawaharlal Nehru Institute of Technology, both affiliated with JNTU-Hyderabad.

Experience

Her academic journey includes roles at prestigious institutions such as TKR Engineering College, Vignan Institute of Technology and Science, and Sreyas Institute of Engineering & Technology. She currently holds the position of Assistant Professor at AVN Institute of Engineering and Technology, where she actively contributes to research and academic advancements in the field of Computer Science.

Research Interests

Dr. Kalpana’s research interests are centered around Artificial Intelligence, particularly in the application of machine learning techniques to solve real-world problems. Her recent work focuses on developing innovative solutions for plant disease recognition and classification using advanced deep learning models.

Awards

She has been recognized for her scholarly contributions with several publications in reputed journals and conferences, including SCI-indexed and Scopus-indexed papers. Her dedication to academic excellence and research innovation has earned her acclaim in the scientific community.

Publications

Dr. Kalpana has authored numerous impactful publications, including:

  • “Plant disease recognition using residual convolutional enlightened Swin transformer networks”, published in Scientific Reports, 2024.
  • “A capsule attention network for plant disease classification”, published in Traitement du Signal, 2023.
  • “FLY-CAPS- A Hybrid Firefly Feature Optimized Capsule Networks for Plant Disease Classification in Resource Constraint Internet of Things (IoT)”, published in International Journal on Recent and Innovation Trends in Computing and Communication, 2023.
  • Several other contributions in conference proceedings and UGC Care-listed journals, contributing significantly to the fields of IoT, deep learning, and computer vision.

 

Jeanfranco David Farfan Escobedo | Machine Learning | Young Scientist Award

Mr. Jeanfranco David Farfan Escobedo | Machine Learning | Young Scientist Award

Jeanfranco David Farfan at Escobedo State University of Campinas, Brazil

Jeanfranco David Farfan Escobedo is a PhD candidate in Computer Science at the University of Campinas (UNICAMP), Brazil, specializing in deep learning techniques for uncertainty reduction in oil reservoir simulations. He holds an M.Sc. in Computer Science from UNICAMP with a thesis in Conversational Systems and a B.Sc. in Computer and Systems Engineering from Universidad Nacional de San Antonio Abad del Cusco (UNSAAC), Peru, focusing on Computer Vision. Jeanfranco’s professional journey includes roles as a researcher at Shell Oil Company, Brazil, and teaching positions at UNICAMP and UTEC, Peru. He has received prestigious awards such as the Shell Oil Company Industry Research Scholarship and has contributed to significant publications in applied computing and artificial intelligence journals. His research timeline demonstrates continuous engagement in advancing deep learning, natural language processing, and computer vision fields.

Author Profile

Google Scholar Profile

Education

Jeanfranco David Farfan Escobedo is currently pursuing a PhD in Computer Science at the University of Campinas (UNICAMP), Brazil. He earned his Master of Science degree in Computer Science from UNICAMP, focusing on Conversational Systems. Previously, he obtained a Bachelor of Science in Computer and Systems Engineering from Universidad Nacional de San Antonio Abad del Cusco (UNSAAC), Peru, with a thesis in Computer Vision.

Research Focus

Jeanfranco’s research primarily revolves around applying deep learning techniques to reduce uncertainty in oil reservoir simulations. Additionally, he explores topics in natural language processing, focusing on conversational systems, and computer vision for tasks like image recognition.

Professional Journey

Jeanfranco has accumulated diverse professional experiences. He currently works as a researcher at Shell Oil Company in Brazil, specializing in utilizing deep learning for improving oil reservoir simulations. He has also served as a Teaching Assistant at UNICAMP, where he supported courses in Algorithms and Computer Programming. Furthermore, he has taught Machine/Deep Learning at the Artificial Intelligence University of Engineering and Technology (UTEC) in Peru.

Honors & Awards

Jeanfranco has received several notable awards, including the Shell Oil Company Industry Research Scholarship in 2021, the Sinch Latin America Industry Research Scholarship in 2019, and first place in the AgroHack hackathon for developing a plant disease monitoring app in 2018.

Publications Noted & Contributions

Jeanfranco has contributed significantly to academic publications, including:

Research Timeline

Jeanfranco’s research journey spans from his undergraduate studies through to his current doctoral research. He has consistently explored cutting-edge topics in deep learning, natural language processing, and computer vision, contributing to advancements in these fields.