Shufeng Song | Batteries | Best Researcher Award

Assoc Prof. Dr. Shufeng Song | Batteries | Best Researcher Award 

Associate Professor at Chongqing University, China

Dr. Shufeng Song is an accomplished Associate Professor in the Department of Aerospace Engineering at Chongqing University, China. With a strong background in materials physics and chemistry, Dr. Song has established himself as a leading researcher in the field of advanced materials, particularly in developing innovative solutions for solid-state batteries. His academic journey, combined with a rich research career, has enabled him to make significant contributions to the understanding and development of superionic conductors and hybrid electrolytes. Over the years, he has garnered numerous accolades for his groundbreaking work, making him a notable candidate for prestigious research awards.

Profile

SCOPUS

Education

Dr. Song began his academic career at Shijiazhuang Tiedao University, where he earned a Bachelor’s degree in Inorganic Nonmetallic Materials Science and Engineering in 2006. Motivated by a passion for materials science, he pursued doctoral studies at the Shanghai Institute of Ceramics, Chinese Academy of Sciences, where he earned his Ph.D. in Materials Physics and Chemistry in 2011. During his doctoral research, Dr. Song laid the groundwork for his future innovations by exploring the intricacies of materials design, paving the way for a successful career in both academic and industrial research settings.

Experience

Dr. Song’s professional journey has been diverse and distinguished, reflecting his commitment to pushing the boundaries of materials science. After earning his Ph.D., he joined Dongfang Electric Corporation, one of the world’s largest energy equipment manufacturers, as a Research Scientist. Here, he gained valuable experience in the application of materials science to large-scale industrial challenges. In 2013, he transitioned to academia as a Postdoctoral Researcher in the Department of Mechanical Engineering at the National University of Singapore. This role allowed him to delve deeper into cutting-edge research, particularly in the development of solid-state battery materials. In 2016, Dr. Song joined Chongqing University as a Lecturer, quickly rising through the ranks to become an Associate Professor in 2018. His tenure-track position at Chongqing University has enabled him to lead several high-impact research projects and mentor a new generation of scientists.

Research Interests

Dr. Song’s research interests lie at the intersection of materials science and energy storage technology, with a specific focus on the development of advanced solid-state batteries. His work on superionic conductors has led to significant advancements in the field, particularly through the invention of hybrid electrolytes with superior ionic conductivity and stability. By synthesizing novel materials and exploring new synthesis methods, Dr. Song aims to overcome the limitations of traditional battery technologies, such as low energy density and poor safety. His research has also extended to optimizing the solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI), which are crucial for improving the performance and longevity of batteries. Through his innovative approaches, Dr. Song has contributed to the evolution of energy storage solutions that are safer, more efficient, and sustainable.

Awards

Dr. Song has been recognized for his significant contributions to materials science and battery technology. His research has attracted funding from prestigious institutions, including the Chinese National Natural Science Foundation and the Ministry of Science and Technology of China. In recognition of his pioneering work, he has also been invited to organize special issues for leading journals in the field of energy materials. His role as a reviewer for renowned journals such as Advanced Energy Materials and the Journal of Power Sources further attests to his standing in the academic community. Dr. Song’s achievements in both research and academic service demonstrate his ongoing commitment to advancing the field of materials science.

Publications

Dr. Song has an impressive publication record, with numerous papers published in high-impact journals. His works have gained considerable attention in the scientific community, as evidenced by the citations they have received. Here are six of his recent key publications:

Song, S. et al., “A concentrated ionogel-in-ceramic silanization composite electrolyte for quasi-solid-state Li metal batteries,” Energy & Environmental Materials, 2024. Cited by: 54.

Song, S. et al., “MoO3 facilitator enables ultrathin and stabilized Li metal anode for quasi-solid-state batteries,” Applied Physics Letters, 2023, 123, 113903. Cited by: 23.

Song, S. et al., “Fluorine-regulated cathode electrolyte interphase enables high-energy quasi-solid-state lithium metal batteries,” Applied Physics Letters, 2023, 122, 043903. Cited by: 19.

Song, S. et al., “Hybrid poly-ether/carbonate ester electrolyte engineering for quasi-solid-state lithium metal batteries,” Materials Today Energy, 2022, 23, 100893. Cited by: 45.

Song, S. et al., “Superconcentrated ionogel-in-ceramic hybrid electrolyte for solid-state Li/Na batteries,” Advanced Materials, 2022, 34, 2205560. Cited by: 253.

Song, S. et al., “Sintering of nano-grained Na superionic conductors,” Chemical Communications, 2021, 57, 4023. Cited by: 64.

Conclusion

Dr. Shufeng Song’s impressive career trajectory, marked by a blend of academic excellence, industrial experience, and innovative research, makes him a deserving candidate for the “Best Researcher Award.” His contributions to the development of advanced materials for energy storage have had a transformative impact on the field, addressing some of the most pressing challenges in battery technology. While there is always room for continued growth, particularly in expanding international collaborations and interdisciplinary research, Dr. Song’s achievements thus far undoubtedly qualify him for recognition as a leading researcher in his field.

 

Sher Afghan Khan | Energy | Best Researcher Award

Dr. Sher Afghan Khan | Energy | Best Researcher Award 

Professor at IIUM, Kuala Lumpur, Malaysia

Dr. Sher Afghan Khan is a distinguished academic and researcher in the field of Mechanical and Aerospace Engineering, particularly known for his contributions to gas dynamics and high-speed aerodynamics. He has dedicated over four decades to teaching and research, making significant advancements in the understanding of fluid mechanics and aerodynamics. Currently serving as a Professor in the Department of Mechanical Engineering at a prominent university in Malaysia, he has played a vital role in shaping the educational landscape and inspiring future generations of engineers.

Profile

ORCID

Education

Dr. Khan holds an impressive academic background, having completed his Doctor of Philosophy (Ph.D.) in Mechanical and Aerospace Engineering at the Indian Institute of Technology Kanpur (IITK) in 2001. His doctoral thesis, titled “Control of Suddenly Expanded Flows,” addressed complex challenges in gas dynamics and set the stage for his subsequent research endeavors. Prior to his Ph.D., he obtained a Master of Technology (M.Tech) in Aerospace Engineering (Aerodynamics) from IITK in 1984, and a Bachelor of Science in Engineering (B.Sc. (Engg.)) from Aligarh Muslim University in 1982. This strong educational foundation has equipped him with a comprehensive understanding of mechanical and aerospace principles.

Experience

Dr. Khan’s professional journey has been marked by a series of impactful academic and administrative roles across various esteemed institutions. He has served as a Professor and Dean of Research at Bearys Institute of Technology in India, Principal at Z.H. College of Engineering & Technology, and has held numerous key positions at Aligarh Muslim University. His extensive experience in academia has not only enriched his teaching methods but has also contributed to institutional growth and innovation in engineering education.

Research Interests

Dr. Khan’s research interests are extensive and highly influential, focusing on gas dynamics, experimental aerodynamics, and active and passive control of high-speed jets. His work on sudden expansion problems and base drag reduction techniques has profound implications for the aerospace industry. Dr. Khan actively supervises both Ph.D. and Master’s students, promoting research excellence and the development of innovative solutions to complex engineering challenges.

Awards

Throughout his illustrious career, Dr. Khan has garnered numerous accolades for his outstanding contributions to science and engineering. He has been recognized as one of the top 2% of scientists worldwide in his field by Stanford University for several consecutive years (2020-2023), based on comprehensive data analysis from Elsevier Data Repository. Additionally, Dr. Khan is a life member of several professional organizations, including the Indian Society of Fluid Mechanics and Fluid Power and the Institution of Mechanical Engineers (India), further showcasing his commitment to advancing the field of mechanical and aerospace engineering.

Publications

Dr. Khan’s prolific research output includes over 431 research papers published in reputable international and national journals, along with 158 conference presentations. His notable publications include:

Khan, S. A., & Rathakrishnan, E. (2002). Active Control of Suddenly Expanded Flows from Over Expanded Nozzles. International Journal of Turbo and Jet Engines, 19(1-2), 119-126. Cited by: 50

Khan, S. A., & Rathakrishnan, E. (2003). Control of Suddenly Expanded Flows with Micro Jets. International Journal of Turbo and Jet Engines, 20(2), 63-81. Cited by: 45

Khan, S. A., & Rathakrishnan, E. (2004). Control of Suddenly Expanded Flow from Under Expanded Nozzles. International Journal of Turbo and Jet Engines, 21(4), 233-253. Cited by: 30

Khan, S. A., & Rathakrishnan, E. (2006). Active Control of Base Pressure in Supersonic Regime. Journal of Aerospace Engineering, 87, 1-8. Cited by: 25

Khan, S. A., & Baig, M. A. A. (2011). Control of Base Flows with Micro Jets. International Journal of Turbo and Jet Engines, 28(1), 59-69. Cited by: 20

Khan, S. A., & Rathakrishnan, E. (2005). Active Control of Suddenly Expanded Flow from Under Expanded Nozzles – Part II. International Journal of Turbo and Jet Engines, 22(3), 163-183. Cited by: 18

Khan, S. A., & Rathakrishnan, E. (2006). Nozzle Expansion Level Effect on a Suddenly Expanded Flow. International Journal of Turbo and Jet Engines, 23(4), 233-258. Cited by: 22

Khan, S. A., & Crasta, A. (2010). Oscillating Supersonic Delta Wing with Curved Leading Edges. International Journal of Advanced Studies in Contemporary Mathematics, 20(3), 359-372. Cited by: 15

Khan, S. A., Baig, M. A. A., & Rathakrishnan, E. (2012). Active Control of Base Pressure in Suddenly Expanded Flow for Area Ratio 4.84. International Journal of Engineering Sciences and Technology, 4(5), 1885-1895. Cited by: 14

Rehman, S., & Khan, S. A. (2008). Control of Base Pressure with Micro Jets Part-I. International Journal of Aircraft Engineering and Aerospace Technology, 80(2), 158-164. Cited by: 17

Conclusion:

Dr. Sher Afghan Khan’s extensive contributions to gas dynamics, aerodynamics, and related fields, along with his strong publication record, make him a compelling candidate for the Best Researcher Award. With continued focus on interdisciplinary research and expanded global collaborations, his future work has the potential to break new ground in aerospace engineering. His achievements, particularly his recognition among the top 2% of scientists globally, make him deserving of such an accolade.

 

Mizbah Ahmed Sresto | Environmental Science, Geography and Urban Planning | Best Researcher Award

Mr.Mizbah Ahmed Sresto | Environmental Science, Geography and Urban Planning | Best Researcher Award

Student Khulna University of Engineering & Technology Bangladesh

Mizbah Ahmed Sresto specializes in environmental research using geospatial technology and machine learning techniques. He holds a Bachelor’s degree in Urban and Regional Planning from Khulna University of Engineering and Technology (KUET), Bangladesh. Mizbah has professional experience as a GIS Analyst and Junior Urban Planner, focusing on GIS data analysis and urban planning projects. His research interests include land use transformation, hazard mapping, and natural resource management. Mizbah has received awards for his academic achievements and has published in peer-reviewed journals on topics related to remote sensing and environmental sustainability.

Profile

Google Scholar

👨‍🎓 Education

Mizbah Ahmed Sresto holds a Bachelor’s degree in Urban and Regional Planning from Khulna University of Engineering and Technology (KUET), Bangladesh, with a CGPA of 3.12 out of 4.00.

🏢 Professional Experience

As a GIS Analyst at Desh Upodesh Limited (DUL), Mizbah specializes in GIS data preparation and management, utilizing geospatial tools for road inventory and condition surveys.

🔬 Research Interests

Mizbah focuses on environmental research using geospatial technology and machine learning. His expertise includes land use transformation, hazard mapping, and natural resource management.

🏆 Awards

Mizbah has received the Dean’s Award from KUET Civil Faculty and the Scopus Index Author Award for outstanding research contributions.

📚 Publications

  • Sresto, M. A., et al. (2022). A GIS and remote sensing approach for measuring summer-winter variation of land use and land cover indices and surface temperature in Dhaka district, Bangladesh. Heliyon. Article Link
  • Sresto, M. A., et al. (2022). Impact of COVID-19 Lockdown on Vegetation Indices and Heat Island Effect: A Remote Sensing Study of Dhaka City, Bangladesh. Sustainability. Article Link
  • Roy, T. K., Siddika, S., & Sresto, M.A. (2022). Assessment of Urban Resiliency Concerning Disaster Risk: A Review on Multi-Dimensional Approaches. Journal of Engineering Science. Article Link
  • Sresto, M. A., et al. (2022). Groundwater vulnerability assessment in Khulna district of Bangladesh by integrating fuzzy algorithm and DRASTIC (DRASTIC-L) model. Modelling Earth Syst. and Environment. Article Link
  • Sresto, M. A., et al. (2021). Application of fuzzy analytic hierarchy process and geospatial technology to identify groundwater potential zones in north-west region of Bangladesh. Environmental Challenges. Article Link
  • Haque, M., Siddika, S., Sresto, M.A. et al. (2021). Geo-spatial Analysis for Flash Flood Susceptibility Mapping in the North-East Haor (Wetland) Region in Bangladesh. Earth System and Environment. Article Link