Farzan Samadani | Mechanical Engineering | Best Researcher Award

Dr.Farzan Samadani | Mechanical Engineering | Best Researcher Award

Ph. D. at University of guilan, Iran

Farzan Samadani is a dedicated researcher specializing in mechanical and aerospace engineering, with significant expertise in nonlinear vibroacoustics and vibration analysis. His work primarily focuses on the study of functionally graded materials (FGMs) and nanotechnology, contributing to the advancement of engineering research. Throughout his academic career, Samadani has consistently pursued challenging research topics, resulting in several publications in high-impact scientific journals. His professional experience includes teaching at multiple academic institutions, where he has shared his knowledge with students and contributed to the development of future engineers. Samadani’s research aims to bridge theoretical findings with practical applications, particularly in materials science and mechanical engineering.

Profile

Google Scholar

Education

Farzan Samadani’s educational background reflects a commitment to continuous learning and advancing engineering knowledge. He earned his Ph.D. in Mechanical Engineering from the University of Guilan in 2023, where he specialized in nonlinear vibroacoustic analysis of doubly curved panels made from FGMs. Prior to his doctoral studies, Samadani completed a Master’s degree in Aerospace Engineering from the Ahrar Institute of Technology and Higher Education in 2018, focusing on the nonlinear vibration analysis of nanobeams. His undergraduate studies began at Sharif University of Technology, where he earned a Bachelor’s degree in Mechanical Engineering in 2003. The diversity of his educational experiences across mechanical and aerospace engineering fields has equipped him with a comprehensive understanding of both theoretical and practical aspects of engineering.

Experience

Farzan Samadani’s professional journey spans both academia and industry. He is currently a teacher at the University of Tehran’s Caspian Faculty of Engineering and has also taught at the University of Applied Science and Technology and the Ahrar Institute of Technology and Higher Education. His teaching roles, which began in 2016, involve instructing courses related to mechanical and aerospace engineering, allowing him to impart knowledge and foster a learning environment for his students. Additionally, Samadani has extensive industry experience. He served as the Founder and CEO of PETRO KARANE PASARGAD Company, where he led projects related to the gas supply network, and worked as a design expert for KARA SANATE PARMIS Company and IRAN RADIATOR Company. These roles enabled him to apply engineering principles in practical settings, particularly in the design and simulation of heat exchangers and gas distribution systems.

Research Interests

Farzan Samadani’s research interests lie primarily in the fields of nonlinear vibroacoustics, nonlinear vibrations, MEMS/NEMS, and functionally graded materials (FGMs). His work involves analytical and semi-analytical methods to solve complex problems in mechanical engineering, particularly in the modeling and analysis of nanostructures and material behavior under various conditions. Samadani’s research aims to provide insights into the dynamic response of materials used in advanced engineering applications, such as aerospace structures and nanotechnology. He is also interested in the application of computational techniques for the analysis of sound transmission in composite materials, furthering the development of more efficient and resilient engineering solutions.

Awards

Although the details of specific awards are not highlighted in the provided information, Farzan Samadani’s significant academic and professional accomplishments, including multiple high-quality publications and the successful completion of complex engineering projects, reflect his recognition as an emerging expert in his field. His teaching positions and leadership roles further demonstrate his contribution to the academic and engineering communities. His research output and impact, evidenced by citations and journal publications, suggest that he is well-regarded within the scientific community.

Publications

“A semi-analytical methodology for predicting the vibroacoustic response of functionally graded nanoplates under thermal loads” (2024), published in Mechanics Based Design of Structures and Machines. Read it here.

“Nonlinear Vibroacoustic Response and Sound Transmission Loss Analysis of Functionally Graded Doubly-curved Shallow Shells” (2023), published in Mechanics of Advanced Materials and Structures. Read it here.

“Nonlinear vibroacoustic analysis of functionally graded plates in the thermal ambiance at oblique incidence” (2023), published in Advances in Applied Mathematics and Mechanics. Read it here.

“Investigation of sound transmission in composite rectangular panels under the incidence wave with two various angles” (2023), published in Journal of Solid and Fluid Mechanics. Read it here.

“Pull-in instability analysis of nanoelectromechanical rectangular plates including the intermolecular, hydrostatic, and thermal actuations using an analytical solution methodology” (2019), published in Communications in Theoretical Physics. Read it here.

“Application of homotopy analysis method for the pull-in and nonlinear vibration analysis of nanobeams using a nonlocal Euler–Bernoulli beam model” (2017), published in Zeitschrift für Naturforschung A. Read it here.

Conclusion

Farzan Samadani is a talented researcher with a strong foundation in mechanical and aerospace engineering. His work in nonlinear vibroacoustics and material analysis positions him as a significant contributor to the advancement of engineering solutions. Through a blend of academic achievements and industry experience, Samadani has demonstrated his capability to address complex engineering challenges. While there are areas for potential improvement, such as increasing the international impact of his research, his dedication and accomplishments make him a suitable candidate for the “Best Researcher Award.” His innovative research and continued commitment to teaching and engineering practice indicate that he will continue to contribute valuable insights to the field.

Chika Judith Abolle-Okoyeagu | Mechanical Engineering | Best Researcher Award

Dr.Chika Judith Abolle-Okoyeagu | Mechanical Engineering | Best Researcher Award

Lecturer-Teaching and Research Robert Gordon University United Kingdom

Judith Abolle is a highly motivated and hardworking chartered Mechanical Engineer and a Senior Fellow of the Higher Education Academy. With over 15 years of academic and industrial experience, Judith has developed significant expertise in engineering research, teaching, and learning, as well as academic leadership, course development, delivery, and management. She is dedicated to building a successful and rewarding career in academia, aiming to facilitate effective course delivery while maximizing student experience.

Profile

ORCiD

Education 🎓

  • 2021: Online Certificate in Leaders of Learning, Harvard University
  • 2017-2018: PG Cert in Teaching and Learning, Edinburgh Napier University
  • 2013-2018: PhD in Mechanical Engineering, Heriot-Watt University, UK
  • 2008-2009: MSc in Computer Systems Engineering, University of East London, UK
  • 2001-2006: BEng (Hons) in Mechanical Engineering, FUT Minna, Nigeria

Experience 💼

  • 2021-Present: Mechanical Engineering Lecturer/Academic Team Lead, Robert Gordon University
    • Responsibilities include supporting the ASL on strategic objectives, carrying out module quality assurance processes, engaging in course development, and leading the e-learning Team.
  • 2020-2021: Mechanical Engineering Lecturer/Course Leader, Robert Gordon University
    • Planned, delivered, and assessed all BEng Mechanical Engineering modules, engaged in course development, and managed course structure.
  • 2017-2020: Mechanical Engineering Lecturer/MEng Program Lead, Edinburgh Napier University
    • Responsible for module design, curriculum, and course development; managed quality and developed new collaborations to improve student employability.
  • 2013-2018: Mechanical Engineering Teaching Assistant, Heriot-Watt University
    • Delivered mechanical engineering modules, mentored and supervised projects, and organized interdepartmental seminars.
  • 2010-2013: FEA Project Engineer, OilDynamix Aberdeen
    • Conducted Linear, Non-linear, and Dynamic FEA on mechanical components, provided design support, and ensured compliance with technical and HSEQ project procedures.
  • 2009-2010: Computer Engineering Lecturer, University of East London
    • Developed and delivered engineering modules, mentored students, and supported curriculum and research development.

Research Interests 🔬

Judith’s research interests encompass a wide range of topics within mechanical engineering, including:

  • Acoustic Emission Monitoring
  • Finite Element Analysis
  • Machine Learning-Augmented Acoustic Emission
  • Defect Analysis in Fiber Reinforced Polymer (FRP) Pipelines
  • Safety Monitoring in Hydrogen Storage

Awards 🏆

  • Top 50 Women in Engineering Awards 2024
  • IMechE Accreditation Lead for Edinburgh Napier University
  • IMechE Academic Liaison Officer for Edinburgh Napier University
  • Scottish Interconnect Student Award Finalist
  • Heriot Watt University PhD James Watt Prize

Publications 📚

  • Abolle-Okoyeagu, C J., Ojotule Onoja., & Chioma Onoshakpor. (2024, July). Navigating STEM: challenges faced by Nigerian female secondary school students. The International Academic Forum (IAFOR) 12th European Conference on Education (ECE2024).
  • Fatukasi, S., Abolle-Okoyeagu, C.J., & Pancholi K. A Comparative Study of Acoustic Emissions from Pencil Lead Breaks on Steel and Aluminum Substrates Using Signal Analysis. Petroleum Engineer. In SPE Annual Technical Conference and Exhibition (Paper accepted).
  • Abolle-Okoyeagu, C.J., Fatukasi, S., & Reuben, B. (2024, September). Measurement and Simulation of the Propagation of Impulsive Acoustic Emission Sources in Pipes. In Acoustics (Vol. 6, No. 3, pp. 620-637). Multidisciplinary Digital Publishing Institute.
  • Abolle-Okoyeagu, C.J., et al. (2024). Quantitative Analysis of the Hsu-Nielsen Source through Advanced Measurement and Simulation Techniques. Proceedings 8th International Conference on Mechanical, Aeronautical and Automotive Engineering, Malaysia.
  • Abolle-Okoyeagu, C.J., et al. (2022). Impact source identification on pipes using acoustic emission energy. e-Journal of Nondestructive Testing, 28(1).