Majdi Khalid | Machine learning | Best Researcher Award

Assoc Prof. Dr. Majdi Khalid | Machine learning | Best Researcher Award 

Associate Professor at Umm Al-Qura University

Assoc. Prof. Dr. Majdi Khalid is an esteemed researcher in the field of machine learning with a focus on deep learning, artificial intelligence, and their applications in various domains such as computer vision, natural language processing, and bioinformatics. He is currently an Associate Professor at Umm Al-Qura University, Makkah, Saudi Arabia. Dr. Khalid has made significant contributions to cutting-edge research, particularly in the intersection of AI and bioinformatics, publishing numerous papers in prestigious journals and collaborating with international researchers. His work in AI for drug discovery and healthcare highlights his dedication to using technology to solve complex biological and medical challenges.

Profile:

ORCID

Education:

Dr. Khalid holds a Ph.D. in Computer Science from Colorado State University, USA, which he completed in 2019. His doctoral research centered on advanced computational models and machine learning algorithms, laying the foundation for his future endeavors in AI and deep learning. Prior to his Ph.D., Dr. Khalid earned his Master of Computer Science (M.C.S.) from the same institution in 2013, and a Bachelor of Science (B.S.) in Computer Science from Umm Al-Qura University in 2006. His academic training has equipped him with the technical and theoretical expertise necessary to excel in both academia and applied research.

Experience:

Dr. Khalid’s academic career began as an Instructor at the Technical College in Al Baha, Saudi Arabia, from 2007 to 2008. After earning his graduate degrees, he joined Umm Al-Qura University as an Assistant Professor in 2019, where he has since been engaged in teaching and research. Throughout his academic journey, Dr. Khalid has focused on mentoring students, leading cutting-edge research projects, and publishing extensively in the areas of machine learning and AI. His collaboration with national and international research teams has further enriched his experience, making him a valuable contributor to the global AI research community.

Research Interests:

Dr. Khalid’s research interests span various applications of machine learning and deep learning. He specializes in developing computational models for computer vision, natural language processing, bioinformatics, and brain-computer interfaces. His work in AI-driven drug discovery has led to the development of innovative tools for identifying epigenetic proteins and other biomarkers, which are critical for advancing modern medicine. Dr. Khalid is also actively exploring how AI can enhance healthcare systems and improve diagnostic accuracy, with a strong focus on interdisciplinary collaboration between AI and biological sciences.

Awards:

Dr. Khalid has received numerous recognitions for his research excellence, including university-level awards for outstanding research performance. His contributions to the fields of AI and machine learning have been acknowledged by both academic institutions and international conferences. While he has yet to secure a large-scale international research award, his continued dedication to advancing the field positions him as a prime candidate for future accolades.

Publications:

  1. Ali, Farman, Abdullah Almuhaimeed, Majdi Khalid, et al. (2024). “DEEPEP: Identification of epigenetic protein by ensemble residual convolutional neural network for drug discovery.” Methods.
    • Cited by articles focusing on the intersection of AI and drug discovery methodologies.
      Read the article here
  2. Khalid, Majdi, Farman Ali, et al. (2024). “An ensemble computational model for prediction of clathrin protein by coupling machine learning with discrete cosine transform.” Journal of Biomolecular Structure and Dynamics.
    • Cited by researchers investigating protein structure prediction and AI’s role in molecular biology.
      Read the article here
  3. Alsini, Raed, Abdullah Almuhaimeed, et al. (2024). “Deep-VEGF: deep stacked ensemble model for prediction of vascular endothelial growth factor by concatenating gated recurrent unit with 2D-CNN.” Journal of Biomolecular Structure and Dynamics.
  4. Alohali, Manal Abdullah, et al. (2024). “Textual emotion analysis using improved metaheuristics with deep learning model for intelligent systems.” Transactions on Emerging Telecommunications Technologies.
    • Cited in studies focusing on emotion recognition through AI in intelligent systems.
      Read the article here
  5. Majdi Khalid (2023). “Advanced Detection of COVID-19 through X-ray Imaging using CovidFusionNet with Hybrid CNN Fusion and Multi-resolution Analysis.” International Journal of Advanced Computer Science and Applications.
  1. Ali, Muhammad Umair, Majdi Khalid, et al. (2023). “Enhancing Skin Lesion Detection: A Multistage Multiclass Convolutional Neural Network-Based Framework.” Bioengineering, 10(12): 1430.
    • Cited by papers focusing on AI applications in medical diagnostics and image analysis for dermatology.
      Read the article here
  2. Alghushairy, Omar, Farman Ali, Wajdi Alghamdi, Majdi Khalid, et al. (2023). “Machine learning-based model for accurate identification of druggable proteins using light extreme gradient boosting.” Journal of Biomolecular Structure and Dynamics, 2023: 1-12.
    • Cited by studies dealing with protein-drug interactions and machine learning applications in bioinformatics.
      Read the article here
  3. Obayya, Marwa, Fahd N. Al-Wesabi, Rana Alabdan, Majdi Khalid, et al. (2023). “Artificial Intelligence for Traffic Prediction and Estimation in Intelligent Cyber-Physical Transportation Systems.” IEEE Transactions on Consumer Electronics, 2023.
    • Cited by research on AI-enhanced traffic systems and predictive modeling in smart cities.
      Read the article here
  4. Alruwais, Nuha, Eatedal Alabdulkreem, Majdi Khalid, et al. (2023). “Modified Rat Swarm Optimization with Deep Learning Model for Robust Recycling Object Detection and Classification.” Sustainable Energy Technologies and Assessments, 59: 103397.
    • Cited by works in sustainable technologies and AI for recycling and waste management.
      Read the article here
  5. Adnan, Adnan, Wang Hongya, Farman Ali, Majdi Khalid, et al. (2023). “A Bi-Layer Model for Identification of piwiRNA using Deep Neural Learning.” Journal of Biomolecular Structure and Dynamics, 2023: 1-9.
  • Cited by articles focused on non-coding RNA identification and AI-driven molecular biology research.
    Read the article here

Conclusion

Assoc. Prof. Dr. Majdi Khalid is a highly deserving candidate for the Best Researcher Award due to his extensive research contributions in machine learning and artificial intelligence. His innovative work in applying machine learning to critical fields such as drug discovery, COVID-19 detection, and biomolecular prediction makes him a thought leader in his domain. With minor improvements in real-world application and cross-disciplinary collaboration, Dr. Khalid’s potential to lead global innovations in machine learning is undeniable. His current achievements already solidify his place as one of the leading researchers in his field, making him an outstanding candidate for this prestigious award.

AHMADOU MUSTAPHA FONTON MOFFO | Machine Learning | Best Researcher Award

Dr. AHMADOU MUSTAPHA FONTON MOFFO | Machines Learning | Best Researcher Award 

Economist | UNESCO | Canada

Short Bio 🌟

Ahmadou Mustapha FONTON is a distinguished economist based in Montréal, Canada, with a Ph.D. in Economics from the Université du Québec à Montréal. Specializing in macroeconomics, financial economics, and applied econometrics, FONTON excels in leveraging machine learning and big data to inform policy decisions and develop robust risk models. His extensive professional experience includes roles at UNESCO and the Ministry of Scientific Research in Cameroon, reflecting his dedication to advancing economic research and policy.

Profile

Google Scholar

Strengths for the Award

  1. Extensive Expertise and Experience: Dr. Fonton brings a wealth of experience in both academic and non-academic settings. His role as an economist at UNESCO and previous positions demonstrate a solid track record in applied econometrics, macroeconomics, and financial economics. His contributions to data collection, statistical analysis, and policy evaluation underscore his broad expertise.
  2. Advanced Technical Skills: His proficiency with a diverse set of software tools (PYTHON, R, MATLAB, STATA, SPSS, etc.) and techniques, including machine learning and big data analysis, highlights his technical acumen. This expertise is critical for modern economic research, especially in forecasting and analyzing complex economic phenomena.
  3. Strong Research Output: Dr. Fonton’s publication record, including his recent work on machine learning in stress testing US banks, demonstrates his ability to contribute valuable insights to the field of economics. His working papers and conference presentations further reflect his active engagement in cutting-edge research.
  4. Academic and Teaching Experience: His roles as a research assistant and instructor at Université du Québec à Montréal and Institut Siantou Superieur show a strong background in teaching and mentoring. This experience is important for fostering new talent and advancing the field through education.
  5. International Perspective and Multilingual Skills: Dr. Fonton’s international experience, combined with his multilingual abilities (English, French, and Bamoun), provides him with a unique perspective on global economic issues. This is especially relevant in the context of UNESCO’s work and cross-border research collaborations.
  6. Policy Impact: His involvement in projects that influence policy, such as his work on forecasting time series for UNESCO and his previous consulting roles, indicates a strong capacity for translating research into practical recommendations. This aligns well with the goals of the Research for Best Researcher Award, which often emphasizes practical impacts of research.

Areas for Improvement

  1. Broader Publication Record: While Dr. Fonton has a notable publication in the International Review of Financial Analysis and several working papers, increasing his publication count in high-impact journals could strengthen his profile further. Broadening his research topics or collaborating on interdisciplinary studies might also enhance his visibility in different research circles.
  2. Increased Collaboration and Networking: Engaging in more collaborative research projects and expanding his network within the global research community could open up additional opportunities for impactful research and visibility. This could involve co-authoring papers with researchers from diverse backgrounds or participating in more international conferences.
  3. Focus on Long-term Projects: While Dr. Fonton’s work on various projects is commendable, focusing on longer-term research initiatives might yield more significant and sustained contributions to the field. Developing comprehensive research programs or longitudinal studies could be beneficial.
  4. Enhanced Public Engagement: Increasing efforts to communicate his research findings to the public and policymakers could amplify the impact of his work. This might include writing policy briefs, engaging in media outreach, or participating in public lectures and forums.

Education 🎓

  • 2023: Ph.D. in Economics, Université du Québec à Montréal, Canada
  • 2010: M.Sc. in Economics, Université Catholique de Louvain, Belgium
  • 2005: B.Sc. in Statistics, ISSEA Yaoundé, Cameroon
  • 2000: Certificate in Mathematics, Cameroon

Experience 💼

2023–Present: Economist-Statistician, UNESCO Institute of Statistics, Canada
Leading data collection and processing for Science and Culture Annual Surveys, developing new survey instruments, and producing statistical reports.

2012–2017: Coordinator of Statistical Projects, Ministry of Scientific Research, Cameroon
Directed national statistical surveys, analyzed data on Research and Development, and assisted in organizing expert meetings and seminars.

2009–2012: Economist, Ministry of Economy and Planning, Cameroon
Monitored macroeconomic indicators and developed socio-economic analyses to guide policy decisions.

2008: Credit Analyst, Afriland First Bank, Cameroon
Analyzed credit portfolios and managed risk assessments to support the bank’s credit-granting process.

Research Interests 🔍

Main Interests:

  • Econometrics (Forecasting, Machine Learning, Big Data Analysis)

Secondary Interests:

  • Macroeconomics
  • Microeconometrics
  • Finance

FONTON’s research integrates advanced econometric models with machine learning techniques to explore macro-financial linkages and evaluate economic policies.

Award 🏅

Ahmadou Mustapha FONTON has been recognized for his contributions to economic research and policy development through various grants and academic accolades. His innovative work in econometrics and machine learning positions him as a leading candidate for prestigious research awards.

Publications 📚

  1. “A machine learning approach in stress testing US bank holding companies” – Accepted for publication in International Review of Financial Analysis (2024). Read Here

Conclusion

Dr. Ahmadou Mustapha FONTON is a highly qualified candidate for the Research for Best Researcher Award. His extensive experience in econometrics, macroeconomics, and financial economics, coupled with his technical skills and policy impact, positions him as a strong contender. His research contributions, combined with his international perspective and teaching experience, align well with the objectives of the award. Addressing the areas for improvement, such as increasing his publication record and expanding his collaborative efforts, could further enhance his candidacy. Overall, Dr. Fonton’s profile reflects a distinguished researcher with a promising trajectory in the field of economics.