Majdi Khalid | Machine learning | Best Researcher Award

Assoc Prof. Dr. Majdi Khalid | Machine learning | Best Researcher Award 

Associate Professor at Umm Al-Qura University

Assoc. Prof. Dr. Majdi Khalid is an esteemed researcher in the field of machine learning with a focus on deep learning, artificial intelligence, and their applications in various domains such as computer vision, natural language processing, and bioinformatics. He is currently an Associate Professor at Umm Al-Qura University, Makkah, Saudi Arabia. Dr. Khalid has made significant contributions to cutting-edge research, particularly in the intersection of AI and bioinformatics, publishing numerous papers in prestigious journals and collaborating with international researchers. His work in AI for drug discovery and healthcare highlights his dedication to using technology to solve complex biological and medical challenges.

Profile:

ORCID

Education:

Dr. Khalid holds a Ph.D. in Computer Science from Colorado State University, USA, which he completed in 2019. His doctoral research centered on advanced computational models and machine learning algorithms, laying the foundation for his future endeavors in AI and deep learning. Prior to his Ph.D., Dr. Khalid earned his Master of Computer Science (M.C.S.) from the same institution in 2013, and a Bachelor of Science (B.S.) in Computer Science from Umm Al-Qura University in 2006. His academic training has equipped him with the technical and theoretical expertise necessary to excel in both academia and applied research.

Experience:

Dr. Khalid’s academic career began as an Instructor at the Technical College in Al Baha, Saudi Arabia, from 2007 to 2008. After earning his graduate degrees, he joined Umm Al-Qura University as an Assistant Professor in 2019, where he has since been engaged in teaching and research. Throughout his academic journey, Dr. Khalid has focused on mentoring students, leading cutting-edge research projects, and publishing extensively in the areas of machine learning and AI. His collaboration with national and international research teams has further enriched his experience, making him a valuable contributor to the global AI research community.

Research Interests:

Dr. Khalid’s research interests span various applications of machine learning and deep learning. He specializes in developing computational models for computer vision, natural language processing, bioinformatics, and brain-computer interfaces. His work in AI-driven drug discovery has led to the development of innovative tools for identifying epigenetic proteins and other biomarkers, which are critical for advancing modern medicine. Dr. Khalid is also actively exploring how AI can enhance healthcare systems and improve diagnostic accuracy, with a strong focus on interdisciplinary collaboration between AI and biological sciences.

Awards:

Dr. Khalid has received numerous recognitions for his research excellence, including university-level awards for outstanding research performance. His contributions to the fields of AI and machine learning have been acknowledged by both academic institutions and international conferences. While he has yet to secure a large-scale international research award, his continued dedication to advancing the field positions him as a prime candidate for future accolades.

Publications:

  1. Ali, Farman, Abdullah Almuhaimeed, Majdi Khalid, et al. (2024). “DEEPEP: Identification of epigenetic protein by ensemble residual convolutional neural network for drug discovery.” Methods.
    • Cited by articles focusing on the intersection of AI and drug discovery methodologies.
      Read the article here
  2. Khalid, Majdi, Farman Ali, et al. (2024). “An ensemble computational model for prediction of clathrin protein by coupling machine learning with discrete cosine transform.” Journal of Biomolecular Structure and Dynamics.
    • Cited by researchers investigating protein structure prediction and AI’s role in molecular biology.
      Read the article here
  3. Alsini, Raed, Abdullah Almuhaimeed, et al. (2024). “Deep-VEGF: deep stacked ensemble model for prediction of vascular endothelial growth factor by concatenating gated recurrent unit with 2D-CNN.” Journal of Biomolecular Structure and Dynamics.
  4. Alohali, Manal Abdullah, et al. (2024). “Textual emotion analysis using improved metaheuristics with deep learning model for intelligent systems.” Transactions on Emerging Telecommunications Technologies.
    • Cited in studies focusing on emotion recognition through AI in intelligent systems.
      Read the article here
  5. Majdi Khalid (2023). “Advanced Detection of COVID-19 through X-ray Imaging using CovidFusionNet with Hybrid CNN Fusion and Multi-resolution Analysis.” International Journal of Advanced Computer Science and Applications.
  1. Ali, Muhammad Umair, Majdi Khalid, et al. (2023). “Enhancing Skin Lesion Detection: A Multistage Multiclass Convolutional Neural Network-Based Framework.” Bioengineering, 10(12): 1430.
    • Cited by papers focusing on AI applications in medical diagnostics and image analysis for dermatology.
      Read the article here
  2. Alghushairy, Omar, Farman Ali, Wajdi Alghamdi, Majdi Khalid, et al. (2023). “Machine learning-based model for accurate identification of druggable proteins using light extreme gradient boosting.” Journal of Biomolecular Structure and Dynamics, 2023: 1-12.
    • Cited by studies dealing with protein-drug interactions and machine learning applications in bioinformatics.
      Read the article here
  3. Obayya, Marwa, Fahd N. Al-Wesabi, Rana Alabdan, Majdi Khalid, et al. (2023). “Artificial Intelligence for Traffic Prediction and Estimation in Intelligent Cyber-Physical Transportation Systems.” IEEE Transactions on Consumer Electronics, 2023.
    • Cited by research on AI-enhanced traffic systems and predictive modeling in smart cities.
      Read the article here
  4. Alruwais, Nuha, Eatedal Alabdulkreem, Majdi Khalid, et al. (2023). “Modified Rat Swarm Optimization with Deep Learning Model for Robust Recycling Object Detection and Classification.” Sustainable Energy Technologies and Assessments, 59: 103397.
    • Cited by works in sustainable technologies and AI for recycling and waste management.
      Read the article here
  5. Adnan, Adnan, Wang Hongya, Farman Ali, Majdi Khalid, et al. (2023). “A Bi-Layer Model for Identification of piwiRNA using Deep Neural Learning.” Journal of Biomolecular Structure and Dynamics, 2023: 1-9.
  • Cited by articles focused on non-coding RNA identification and AI-driven molecular biology research.
    Read the article here

Conclusion

Assoc. Prof. Dr. Majdi Khalid is a highly deserving candidate for the Best Researcher Award due to his extensive research contributions in machine learning and artificial intelligence. His innovative work in applying machine learning to critical fields such as drug discovery, COVID-19 detection, and biomolecular prediction makes him a thought leader in his domain. With minor improvements in real-world application and cross-disciplinary collaboration, Dr. Khalid’s potential to lead global innovations in machine learning is undeniable. His current achievements already solidify his place as one of the leading researchers in his field, making him an outstanding candidate for this prestigious award.

Subhrangshu Adhikary | Machine Learning | Young Scientist Award

Mr Subhrangshu Adhikary | Machine Learning | Young Scientist Award

Mr Subhrangshu Adhikary, Spiraldevs Automation Industries Pvt. Ltd. India

Subhrangshu Adhikary is the Director of Spiraldevs Automation Industries Pvt. Ltd. and a PhD scholar at the National Institute of Technology, Durgapur. With a passion for leveraging scientific advancements to solve real-world problems, he aims to make a positive impact on society and the environment. Adhikary has a diverse skill set encompassing big data, AI, and IoT, and he is recognized for his leadership in both academia and industry. His work spans across research, innovation, and technology development, reflecting his commitment to advancing knowledge and practical solutions in computer science and engineering.

Publication Profile

Scopus

Strengths for the Award

  1. Significant Contributions to Research:
    • Subhrangshu Adhikary has made notable contributions in various fields including machine learning, big data, and biomedical signal processing. His research work covers a range of topics such as secure classification frameworks, document classification with vision transformers, and advanced cryptographic algorithms.
    • His papers, such as those published in Biomedical Signal Processing and Control and Machine Learning and Knowledge Extraction, demonstrate his expertise and innovative approach to complex problems.
  2. Innovative Intellectual Properties:
    • Adhikary holds multiple patents and copyrights, which showcase his ability to develop practical and innovative solutions. For instance, his patents related to fault-tolerant storage systems and decentralized sensor networks are indicative of his technical prowess and creativity.
  3. Awards and Recognition:
    • His achievements, including the Best Research Award at SMTST-2020 and several accolades from NPTEL, highlight his recognition within the scientific community. These awards underline his commitment to excellence and his impact on the field of computer science and engineering.
  4. Diverse Skill Set:
    • His broad technical skill set in areas such as big data, AI/ML, and IoT, combined with his experience in full-stack development and various programming languages, reflects a well-rounded expertise essential for cutting-edge research.
  5. Leadership and Experience:
    • As the Director of Spiraldevs Automation Industries Pvt. Ltd. and IT Head of Drevas Vision Pvt. Ltd., Adhikary has demonstrated strong leadership skills and practical experience in managing and executing technology projects. His roles in these positions complement his research activities, providing a solid foundation for innovative and impactful work.

Areas for Improvement

  1. Publication Impact:
    • While Adhikary has numerous publications, increasing the citation impact and visibility of his work in high-impact journals could further enhance his reputation in the research community. Expanding his research into more widely recognized venues could contribute to a greater influence in his field.
  2. Interdisciplinary Collaboration:
    • Further collaboration with researchers from different disciplines could broaden the scope and application of his work. Engaging in interdisciplinary projects may lead to more diverse and impactful research outcomes.
  3. Research Visibility:
    • Increasing engagement with broader research communities through conferences and workshops could raise awareness of his contributions. Presenting at international forums and participating in collaborative research initiatives may help elevate his profile.

Education

Subhrangshu Adhikary is pursuing a Doctorate in Computer Science and Engineering at the National Institute of Technology, Durgapur, since August 2022. He earned his Bachelor of Technology in Computer Science and Engineering from Dr. B.C. Roy Engineering College, achieving a CGPA of 9.20. His academic journey began at Bethany Mission School, where he completed his Class XII with an aggregate of 74% and Class X with a perfect CGPA of 10.0. His educational background underscores his strong foundation and continued pursuit of excellence in technology and research.

Experience

Subhrangshu Adhikary has been the Director of Spiraldevs Automation Industries Pvt. Ltd. since July 2020, driving innovation and technology solutions in West Bengal. He also serves as the IT Head of Drevas Vision Pvt. Ltd., a software outsourcing company, since September 2020. His roles involve overseeing technology development and management, showcasing his leadership and expertise in the tech industry. His experience encompasses both strategic direction and technical execution, highlighting his multifaceted capabilities in technology and business management.

Awards and Honors

Subhrangshu Adhikary has been honored with the Best Research Award at the SMTST-2020 Conference, recognizing his outstanding research contributions. He has also received multiple accolades from NPTEL, including NPTEL Star, NPTEL Believer, and NPTEL Enthusiast. These awards reflect his excellence in the field of computer science and engineering. Additionally, Adhikary has achieved significant recognition through various local, school, and college-level competition wins, and ranked AIR 108 in the PNTSE Olympiad in 2015.

Research Focus

Subhrangshu Adhikary’s research focuses on integrating big data, AI, and IoT to address complex problems. His work includes developing distributed fault-tolerant storage systems, decentralized sensor networks, and advanced cryptographic algorithms. He explores machine learning applications for environmental monitoring and biomedical diagnostics. His research aims to create sustainable and impactful solutions, enhancing both theoretical knowledge and practical applications in technology and data science.

Publication Top Notes

  • “DitDViiPt PrivLet: A differential privacy and inverse wavelet decomposition framework for secure and optimized hemiplegic gait classification” 📝
  • “VisFormers—Combining Vision and Transformers for Enhanced Complex Document Classification” 📄
  • “Global marine phytoplankton dynamics analysis with machine learning and reanalyzed remote sensing” 🌊
  • “Secret learning for lung cancer diagnosis—a study with homomorphic encryption, texture analysis and deep learning” 🩺
  • “Optimized EEG based mood detection with signal processing and deep neural networks for brain-computer interface” 🧠
  • “DeCrypt: a 3DES inspired optimised cryptographic algorithm” 🔐
  • “Improved Large-Scale Ocean Wave Dynamics Remote Monitoring Based on Big Data Analytics and Reanalyzed Remote Sensing” 🌍
  • “If Human Can Learn from Few Samples, Why Can’t AI? An Attempt On Similar Object Recognition With Few Training Data Using Meta-Learning” 🤖
  • “Evolutionary Swarming Particles To Speedup Neural Network Parametric Weights Updates” ⚙️
  • “Price Prediction of Digital Currencies using Machine Learning” 💹

Conclusion

Subhrangshu Adhikary is a highly deserving candidate for the Best Researcher Award due to his significant contributions to research, innovative intellectual properties, and demonstrated leadership in the technology sector. His impressive track record of awards, patents, and publications underscores his expertise and dedication to advancing knowledge in his field. Addressing areas for improvement, such as increasing the impact of his publications and enhancing interdisciplinary collaborations, could further solidify his standing as a leading researcher. Overall, Adhikary’s achievements and potential make him a strong contender for this prestigious award.