Farzan Samadani | Mechanical Engineering | Best Researcher Award

Dr.Farzan Samadani | Mechanical Engineering | Best Researcher Award

Ph. D. at University of guilan, Iran

Farzan Samadani is a dedicated researcher specializing in mechanical and aerospace engineering, with significant expertise in nonlinear vibroacoustics and vibration analysis. His work primarily focuses on the study of functionally graded materials (FGMs) and nanotechnology, contributing to the advancement of engineering research. Throughout his academic career, Samadani has consistently pursued challenging research topics, resulting in several publications in high-impact scientific journals. His professional experience includes teaching at multiple academic institutions, where he has shared his knowledge with students and contributed to the development of future engineers. Samadani’s research aims to bridge theoretical findings with practical applications, particularly in materials science and mechanical engineering.

Profile

Google Scholar

Education

Farzan Samadani’s educational background reflects a commitment to continuous learning and advancing engineering knowledge. He earned his Ph.D. in Mechanical Engineering from the University of Guilan in 2023, where he specialized in nonlinear vibroacoustic analysis of doubly curved panels made from FGMs. Prior to his doctoral studies, Samadani completed a Master’s degree in Aerospace Engineering from the Ahrar Institute of Technology and Higher Education in 2018, focusing on the nonlinear vibration analysis of nanobeams. His undergraduate studies began at Sharif University of Technology, where he earned a Bachelor’s degree in Mechanical Engineering in 2003. The diversity of his educational experiences across mechanical and aerospace engineering fields has equipped him with a comprehensive understanding of both theoretical and practical aspects of engineering.

Experience

Farzan Samadani’s professional journey spans both academia and industry. He is currently a teacher at the University of Tehran’s Caspian Faculty of Engineering and has also taught at the University of Applied Science and Technology and the Ahrar Institute of Technology and Higher Education. His teaching roles, which began in 2016, involve instructing courses related to mechanical and aerospace engineering, allowing him to impart knowledge and foster a learning environment for his students. Additionally, Samadani has extensive industry experience. He served as the Founder and CEO of PETRO KARANE PASARGAD Company, where he led projects related to the gas supply network, and worked as a design expert for KARA SANATE PARMIS Company and IRAN RADIATOR Company. These roles enabled him to apply engineering principles in practical settings, particularly in the design and simulation of heat exchangers and gas distribution systems.

Research Interests

Farzan Samadani’s research interests lie primarily in the fields of nonlinear vibroacoustics, nonlinear vibrations, MEMS/NEMS, and functionally graded materials (FGMs). His work involves analytical and semi-analytical methods to solve complex problems in mechanical engineering, particularly in the modeling and analysis of nanostructures and material behavior under various conditions. Samadani’s research aims to provide insights into the dynamic response of materials used in advanced engineering applications, such as aerospace structures and nanotechnology. He is also interested in the application of computational techniques for the analysis of sound transmission in composite materials, furthering the development of more efficient and resilient engineering solutions.

Awards

Although the details of specific awards are not highlighted in the provided information, Farzan Samadani’s significant academic and professional accomplishments, including multiple high-quality publications and the successful completion of complex engineering projects, reflect his recognition as an emerging expert in his field. His teaching positions and leadership roles further demonstrate his contribution to the academic and engineering communities. His research output and impact, evidenced by citations and journal publications, suggest that he is well-regarded within the scientific community.

Publications

“A semi-analytical methodology for predicting the vibroacoustic response of functionally graded nanoplates under thermal loads” (2024), published in Mechanics Based Design of Structures and Machines. Read it here.

“Nonlinear Vibroacoustic Response and Sound Transmission Loss Analysis of Functionally Graded Doubly-curved Shallow Shells” (2023), published in Mechanics of Advanced Materials and Structures. Read it here.

“Nonlinear vibroacoustic analysis of functionally graded plates in the thermal ambiance at oblique incidence” (2023), published in Advances in Applied Mathematics and Mechanics. Read it here.

“Investigation of sound transmission in composite rectangular panels under the incidence wave with two various angles” (2023), published in Journal of Solid and Fluid Mechanics. Read it here.

“Pull-in instability analysis of nanoelectromechanical rectangular plates including the intermolecular, hydrostatic, and thermal actuations using an analytical solution methodology” (2019), published in Communications in Theoretical Physics. Read it here.

“Application of homotopy analysis method for the pull-in and nonlinear vibration analysis of nanobeams using a nonlocal Euler–Bernoulli beam model” (2017), published in Zeitschrift für Naturforschung A. Read it here.

Conclusion

Farzan Samadani is a talented researcher with a strong foundation in mechanical and aerospace engineering. His work in nonlinear vibroacoustics and material analysis positions him as a significant contributor to the advancement of engineering solutions. Through a blend of academic achievements and industry experience, Samadani has demonstrated his capability to address complex engineering challenges. While there are areas for potential improvement, such as increasing the international impact of his research, his dedication and accomplishments make him a suitable candidate for the “Best Researcher Award.” His innovative research and continued commitment to teaching and engineering practice indicate that he will continue to contribute valuable insights to the field.

Sandeep Jain | Mechanical and Metallurgical Engineering | Best Researcher Award

Dr. Sandeep Jain | Mechanical and Metallurgical Engineering | Best Researcher Award 

Post Doctoral Researcher at Sungkyunkwan University, Republic of Korea, South Korea

Dr. Sandeep Jain is a Postdoctoral Researcher at the Department of Materials Science and Engineering, Sungkyunkwan University, South Korea. With a solid foundation in materials science, Dr. Jain has gained extensive experience in alloy development, mechanical behavior analysis, and the application of machine learning in materials research. His work spans critical areas such as high-entropy alloys, phase equilibria studies, and the development of lightweight materials, making significant contributions to the field. He has collaborated internationally, demonstrating his ability to work across interdisciplinary teams and cutting-edge projects, driving innovation in materials engineering.

Profile

ORCID

Education:

Dr. Sandeep Jain holds a Ph.D. in MEMS from the Indian Institute of Technology (IIT) Indore, which he completed in 2023 with a CGPA of 8.67/10. Prior to his doctoral studies, he earned his Master of Technology in Material Science and Engineering from IIT Indore in 2017, achieving a CGPA of 8.75/10. His academic journey began with a Bachelor of Engineering in Mechanical Engineering from Jai Narain Vyas University, Jodhpur, in 2013, where he secured a percentage of 68%. Dr. Jain’s academic excellence in these esteemed institutions reflects his dedication to research and innovation in materials science.

Experience:

Dr. Jain’s professional experience includes his current position as a Postdoctoral Researcher at Sungkyunkwan University, where he is involved in the design and development of lightweight multicomponent alloys using machine learning. Prior to this, he worked as a Research Associate at IIT Delhi, where he focused on the mechanical and creep behavior of Ni-based superalloys and XRD analysis of hot-rolled aluminum-containing stainless steel. Additionally, he has served as a Project Associate at IIT Indore, contributing to the design and development of lightweight Ni-based alloys. During his Ph.D., Dr. Jain conducted in-depth research on phase equilibria and mechanical properties of multicomponent alloys, further enhancing his expertise in the field.

Research Interest:

Dr. Jain’s research interests lie at the intersection of materials science and machine learning. He specializes in the development of high-entropy alloys for high-temperature and high-strength structural applications, phase equilibria studies, and mechanical behavior analysis. His work also extends to solidification simulation and materials characterization, where he applies machine learning techniques to optimize alloy performance and predict mechanical properties. His interdisciplinary approach bridges advanced materials research with emerging technologies, making his work highly relevant for the future of engineering materials.

Awards:

While Dr. Jain’s CV does not list specific awards, his accomplishments in cutting-edge research, prestigious academic affiliations, and numerous publications in high-impact journals demonstrate his growing recognition in the field of materials science. His contributions, particularly in the integration of machine learning with alloy development, reflect a forward-thinking approach, positioning him as an emerging leader in his field.

Publications:

Dr. Jain has an impressive list of publications in reputed journals, covering a wide range of topics from phase equilibria to machine learning in material science. Some of his notable works include:

Phase equilibria and mechanical properties in multicomponent Al-Ni-X (X= Fe, Cr) alloys (2018), Trans Indian Inst Met, cited by 40.

Phase evolution and mechanical behavior of Co-Fe-Mn-Ni-Ti eutectic high entropy alloy (2018), Trans Indian Inst Met, cited by 30.

Solidification simulation of single-phase Fe-Co-Cr-Ni-V high entropy alloy (2022), Philosophical Magazine, cited by 25.

Effect of Si on microstructure and mechanical properties of Al-Cu alloys (2022), Silicon, cited by 20.

Solidification simulation of 6-component single-phase high entropy alloy (2022), Trans Indian Inst Met, cited by 15.

Effect of Ni and Si alloying elements on phase evolution and mechanical properties of Al-Cu alloys (2023), Material Chemistry and Physics, cited by 18.

Effect of Friction Stir Processing of novel designed Aluminum-Based Alloys to Enhance Strength and Ductility (2023), Arabian Journal for Science & Engineering, cited by 14.

Prediction of hot deformation behavior in AlCoCrFeNi2.1 eutectic high entropy alloy by conventional and artificial neural network modeling (2023), The Transactions of Indian National Academy of Engineering, cited by 12.

Effect of Ta on the evolution of phases and mechanical properties of novel seven components Fe-Co-Ni-Cr-V-Al-Ta eutectic high entropy alloys: Experimental study and Numerical Simulation (2024), The Transactions of Indian National Academy of Engineering, cited by 10.

Prediction of the effect of Ta on the mechanical behavior and experimental validation of novel six components Fe-Co-Ni-Cr-V-Ta eutectic high entropy alloys (2024), Refractory Metals and Hard Materials, cited by 8.

Enhancing flow stress predictions in CoCrFeNiV high entropy alloy with conventional and machine learning techniques (2024), Journal of Material Research and Technology, cited by 6.

A Machine Learning Perspective on Hardness Prediction in Advanced multicomponent Al-Mg based Lightweight Alloys (2024), Material Letters, cited by 4.

Genetic Algorithm Optimized Multiply Strategies Flow Behavior Modeling at Elevated Temperatures: A Case Study of AA6061-T6 Alloy (2024), Journal of Material Research and Technology, cited by 2.

Conclusion:

Sandeep Jain stands out as an innovative and productive researcher with expertise in materials science, machine learning integration, and alloy development. His accomplishments in publishing high-impact research, international collaborations, and the application of advanced techniques like machine learning in engineering materials make him a strong candidate for the Best Researcher Award. However, broadening his research impact and taking on more leadership roles could further elevate his candidacy in the future.

Tian-Bing Xu | Mechanical and Aerospace | Best Researcher Awards

Prof. Tian-Bing Xu | Mechanical and Aerospace | Best Researcher Awards

Ph.D. at Old Dominion University, United States

Dr. Tian-Bing Xu is an Associate Professor in the Department of Mechanical and Aerospace Engineering at Old Dominion University (ODU). He leads the Smart Materials & Intelligent Systems (SMIS) Laboratory, focusing on advanced technologies in smart materials, energy harvesting, and intelligent systems. Recognized among the top 2% of the most influential scientists worldwide, Dr. Xu has made significant contributions to energy conversion, renewable energies, and aerospace technologies. His interdisciplinary research and collaboration with organizations such as NASA and the Department of Defense have earned him numerous accolades, cementing his reputation as a leading researcher in his field.

Profile

Google Scholar

Education:

Dr. Xu’s academic journey began with a Diploma in Physics from Shandong University, China, followed by graduate work at the Chinese Academy of Sciences. He then moved to the United States, where he completed both his Master’s and Ph.D. in Materials Science and Engineering at The Pennsylvania State University. His Ph.D. research focused on developing electromechanical devices using electroactive polymers, under the guidance of Dr. Qiming Zhang. This education laid the foundation for his future work in advanced materials and intelligent systems, blending fundamental science with applied engineering solutions.

Experience:

Dr. Xu has over two decades of experience in academic and applied research. Since joining ODU in 2018 as an Associate Professor, he has led projects in smart materials, energy harvesting, and sensor technologies. Before ODU, he worked at NASA Langley Research Center and the National Institute of Aerospace in various capacities, contributing significantly to aerospace research. His work in these roles included leadership in developing piezoelectric materials and energy harvesting systems, with several projects transitioning to industrial applications. He also held a Senior Research Scientist position, which was critical in his collaboration with NASA on multiple innovations. His academic experience is further highlighted by multiple invited talks and keynote speeches.

Research Interests:

Dr. Xu’s research primarily focuses on smart materials and intelligent systems, with applications in energy harvesting, robotics, medical devices, and renewable energies. His work aims to develop materials and systems that can efficiently convert mechanical energy into electrical energy, particularly for use in structural health monitoring, offshore energy systems, and wearable technology. He is also deeply invested in advancing manufacturing technologies for these materials to increase their real-world applicability. Additionally, Dr. Xu’s research has expanded into exploring piezoelectric technologies for energy recovery, aiming to revolutionize both the aerospace and renewable energy industries.

Awards:

Dr. Xu has received numerous awards for his groundbreaking research. Notably, he was included in the Stanford University list of the top 2% of the most influential scientists worldwide. He has also been awarded research grants totaling over $12 million from prestigious organizations such as NASA, NSF, DOD, and various state agencies. His leadership in securing these grants, both as principal investigator and co-investigator, highlights his capacity to drive impactful research projects. Dr. Xu has also received the prestigious ONR Summer Faculty Fellowship and has been honored with awards for his patented technologies.

Publications:

Dr. Xu has published 58 peer-reviewed journal articles, 3 book chapters, and over 44 conference papers. His research has appeared in leading journals with high impact factors, contributing significantly to the advancement of materials science and engineering. A selection of his key publications includes:

A review of piezoelectric footwear energy harvesters: principles, methods, and applications, Sensors, 2023.

Proof Mass Effects on a Flextensional Piezoelectric Energy Harvester, IFAC-PapersOnLine, 2022.

A high density piezoelectric energy harvesting device from highway traffic—System design and road test, Applied Energy, 2021.

Piezoelectric energy harvesting from human walking by using a two-stage amplification mechanism, Energy, 2019.

Design, optimization, modeling, and testing of a piezoelectric footwear energy harvester, Energy Conversion and Management, 2018.

Conclusion:

Dr. Tian-Bing Xu’s achievements make him a highly deserving candidate for the Best Researcher Award. His pioneering work in smart materials, energy harvesting technologies, and advanced manufacturing places him at the forefront of scientific innovation. His leadership in securing substantial research grants, his prolific publication record, and his numerous patents underscore his significant contributions to both academic and practical advancements in his field. With continued growth in interdisciplinary research and broader global collaborations, Dr. Xu’s work promises to have an even greater impact on the future of technology and sustainable energy solutions.

Chika Judith Abolle-Okoyeagu | Mechanical Engineering | Best Researcher Award

Dr.Chika Judith Abolle-Okoyeagu | Mechanical Engineering | Best Researcher Award

Lecturer-Teaching and Research Robert Gordon University United Kingdom

Judith Abolle is a highly motivated and hardworking chartered Mechanical Engineer and a Senior Fellow of the Higher Education Academy. With over 15 years of academic and industrial experience, Judith has developed significant expertise in engineering research, teaching, and learning, as well as academic leadership, course development, delivery, and management. She is dedicated to building a successful and rewarding career in academia, aiming to facilitate effective course delivery while maximizing student experience.

Profile

ORCiD

Education 🎓

  • 2021: Online Certificate in Leaders of Learning, Harvard University
  • 2017-2018: PG Cert in Teaching and Learning, Edinburgh Napier University
  • 2013-2018: PhD in Mechanical Engineering, Heriot-Watt University, UK
  • 2008-2009: MSc in Computer Systems Engineering, University of East London, UK
  • 2001-2006: BEng (Hons) in Mechanical Engineering, FUT Minna, Nigeria

Experience 💼

  • 2021-Present: Mechanical Engineering Lecturer/Academic Team Lead, Robert Gordon University
    • Responsibilities include supporting the ASL on strategic objectives, carrying out module quality assurance processes, engaging in course development, and leading the e-learning Team.
  • 2020-2021: Mechanical Engineering Lecturer/Course Leader, Robert Gordon University
    • Planned, delivered, and assessed all BEng Mechanical Engineering modules, engaged in course development, and managed course structure.
  • 2017-2020: Mechanical Engineering Lecturer/MEng Program Lead, Edinburgh Napier University
    • Responsible for module design, curriculum, and course development; managed quality and developed new collaborations to improve student employability.
  • 2013-2018: Mechanical Engineering Teaching Assistant, Heriot-Watt University
    • Delivered mechanical engineering modules, mentored and supervised projects, and organized interdepartmental seminars.
  • 2010-2013: FEA Project Engineer, OilDynamix Aberdeen
    • Conducted Linear, Non-linear, and Dynamic FEA on mechanical components, provided design support, and ensured compliance with technical and HSEQ project procedures.
  • 2009-2010: Computer Engineering Lecturer, University of East London
    • Developed and delivered engineering modules, mentored students, and supported curriculum and research development.

Research Interests 🔬

Judith’s research interests encompass a wide range of topics within mechanical engineering, including:

  • Acoustic Emission Monitoring
  • Finite Element Analysis
  • Machine Learning-Augmented Acoustic Emission
  • Defect Analysis in Fiber Reinforced Polymer (FRP) Pipelines
  • Safety Monitoring in Hydrogen Storage

Awards 🏆

  • Top 50 Women in Engineering Awards 2024
  • IMechE Accreditation Lead for Edinburgh Napier University
  • IMechE Academic Liaison Officer for Edinburgh Napier University
  • Scottish Interconnect Student Award Finalist
  • Heriot Watt University PhD James Watt Prize

Publications 📚

  • Abolle-Okoyeagu, C J., Ojotule Onoja., & Chioma Onoshakpor. (2024, July). Navigating STEM: challenges faced by Nigerian female secondary school students. The International Academic Forum (IAFOR) 12th European Conference on Education (ECE2024).
  • Fatukasi, S., Abolle-Okoyeagu, C.J., & Pancholi K. A Comparative Study of Acoustic Emissions from Pencil Lead Breaks on Steel and Aluminum Substrates Using Signal Analysis. Petroleum Engineer. In SPE Annual Technical Conference and Exhibition (Paper accepted).
  • Abolle-Okoyeagu, C.J., Fatukasi, S., & Reuben, B. (2024, September). Measurement and Simulation of the Propagation of Impulsive Acoustic Emission Sources in Pipes. In Acoustics (Vol. 6, No. 3, pp. 620-637). Multidisciplinary Digital Publishing Institute.
  • Abolle-Okoyeagu, C.J., et al. (2024). Quantitative Analysis of the Hsu-Nielsen Source through Advanced Measurement and Simulation Techniques. Proceedings 8th International Conference on Mechanical, Aeronautical and Automotive Engineering, Malaysia.
  • Abolle-Okoyeagu, C.J., et al. (2022). Impact source identification on pipes using acoustic emission energy. e-Journal of Nondestructive Testing, 28(1).