NEERAJ KUMAR | MECHANICAL ENGINEERING | Best Researcher Award

Dr. NEERAJ KUMAR | MECHANICAL ENGINEERING | Best Researcher Award

Dr. Neeraj Kumar is an accomplished academic and researcher specializing in mechanical engineering, with a strong focus on fluid power systems, renewable energy, and automation. Currently serving as an Assistant Professor at Malla Reddy Engineering College for Women, Hyderabad, he has a rich background in academia and research. His work primarily revolves around electrohydraulic transmission systems, control strategies, and power optimization techniques for wind turbines. With multiple peer-reviewed publications and conference presentations, Dr. Kumar contributes significantly to the advancement of energy-efficient technologies.

profile

orcid

Education

Dr. Neeraj Kumar pursued a direct Ph.D. after his Bachelor’s degree, earning his doctorate from the National Institute of Technology (NIT) Meghalaya between 2016 and 2023. His doctoral research focused on Electro-hydrostatic Transmission System Control for Maximum Power Tracking of Horizontal Axis Wind Turbine with Pump Fault, encompassing areas such as fluid power control, renewable energy, and automation. He completed his Bachelor of Engineering in Mechanical Engineering at Shri Dharmasthala Manjunatheshwara College of Engineering and Technology (SDMCET), Karnataka, achieving a distinction with a CGPA of 8.65.

Experience

Dr. Kumar has extensive teaching experience, having served as an Assistant Professor at various institutions. He is currently with Malla Reddy Engineering College for Women, Hyderabad. Before this, he held positions at Guru Nanak Institutions Technical Campus and Sityog Institute of Technology, Aurangabad. He has also contributed to online education as a subject expert in mechanical engineering with Chegg Pvt. Ltd. His administrative roles include serving as Head of Department (Mechanical Engineering) and NAAC Coordinator at Sityog Institute of Technology.

Research Interests

Dr. Kumar’s research interests lie in CFD Analysis, Hydraulic System Design and Control, Renewable Energy, Non-Linear Dynamics, and Automation. His work focuses on the development of fault-tolerant control strategies for fluid power transmission systems, particularly in wind energy applications. He has expertise in software tools such as MATLAB Simulink, Ansys, LabVIEW, and automation simulation platforms.

Awards and Recognitions

Dr. Kumar has been recognized for his contributions to academia and research. Notably, he has served as a reviewer for prestigious journals such as the Journal of Scientific and Industrial Research (2021) and Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering (2023). He also qualified the GATE examination in 2016 with an All India Rank of 24,299.

Selected Publications

Dr. Kumar has authored several influential research papers in peer-reviewed international journals. Some of his key publications include:

Kumar, N., Kumar, R., Sarkar, K. B., Maity, S. (2020)Condition monitoring of hydraulic transmission system with variable displacement axial piston pump and fixed displacement motor. Materials Today: Proceedings (Cited in multiple studies on hydraulic system monitoring).

Kumar, N., Kumar, R., Sarkar, K. B., Maity, S. (2021)Performance analysis of swash plate axial piston pump with different hydraulic fluids at different temperatures. Journal of Scientific and Industrial Research, Vol. 80.

Kumar, N., K. B. Sarkar, Vekaiah, P., K. B., Maity, S. (2023)Wind turbine electrohydraulic transmission system control for maximum power tracking with pump fault. Journal of Systems and Control Engineering, Vol. 237(9), 1702-1716.

Kumar, N., Vekaiah, P., Sarkar, K. B., Maity, S. (2024, Accepted)Electrohydraulic transmission system control with pump fault through fuzzy fractional order PID controller.

Kumar, N., Sarkar, K. B., Maity, S. (2018)Recent development and application of the hydrostatic transmission system. Advances in Mechanical Engineering.

Conclusion

Dr. Neeraj Kumar’s extensive research output, innovative contributions, and commitment to advancing engineering sciences make him a highly deserving candidate for the Best Researcher Award. His work in electro-hydrostatic transmission systems and renewable energy has a significant impact on both academia and industry, positioning him as a leader in his field.

Chika Judith Abolle-Okoyeagu | Mechanical Engineering | Best Researcher Award

Dr.Chika Judith Abolle-Okoyeagu | Mechanical Engineering | Best Researcher Award

Lecturer-Teaching and Research Robert Gordon University United Kingdom

Judith Abolle is a highly motivated and hardworking chartered Mechanical Engineer and a Senior Fellow of the Higher Education Academy. With over 15 years of academic and industrial experience, Judith has developed significant expertise in engineering research, teaching, and learning, as well as academic leadership, course development, delivery, and management. She is dedicated to building a successful and rewarding career in academia, aiming to facilitate effective course delivery while maximizing student experience.

Profile

ORCiD

Education 🎓

  • 2021: Online Certificate in Leaders of Learning, Harvard University
  • 2017-2018: PG Cert in Teaching and Learning, Edinburgh Napier University
  • 2013-2018: PhD in Mechanical Engineering, Heriot-Watt University, UK
  • 2008-2009: MSc in Computer Systems Engineering, University of East London, UK
  • 2001-2006: BEng (Hons) in Mechanical Engineering, FUT Minna, Nigeria

Experience 💼

  • 2021-Present: Mechanical Engineering Lecturer/Academic Team Lead, Robert Gordon University
    • Responsibilities include supporting the ASL on strategic objectives, carrying out module quality assurance processes, engaging in course development, and leading the e-learning Team.
  • 2020-2021: Mechanical Engineering Lecturer/Course Leader, Robert Gordon University
    • Planned, delivered, and assessed all BEng Mechanical Engineering modules, engaged in course development, and managed course structure.
  • 2017-2020: Mechanical Engineering Lecturer/MEng Program Lead, Edinburgh Napier University
    • Responsible for module design, curriculum, and course development; managed quality and developed new collaborations to improve student employability.
  • 2013-2018: Mechanical Engineering Teaching Assistant, Heriot-Watt University
    • Delivered mechanical engineering modules, mentored and supervised projects, and organized interdepartmental seminars.
  • 2010-2013: FEA Project Engineer, OilDynamix Aberdeen
    • Conducted Linear, Non-linear, and Dynamic FEA on mechanical components, provided design support, and ensured compliance with technical and HSEQ project procedures.
  • 2009-2010: Computer Engineering Lecturer, University of East London
    • Developed and delivered engineering modules, mentored students, and supported curriculum and research development.

Research Interests 🔬

Judith’s research interests encompass a wide range of topics within mechanical engineering, including:

  • Acoustic Emission Monitoring
  • Finite Element Analysis
  • Machine Learning-Augmented Acoustic Emission
  • Defect Analysis in Fiber Reinforced Polymer (FRP) Pipelines
  • Safety Monitoring in Hydrogen Storage

Awards 🏆

  • Top 50 Women in Engineering Awards 2024
  • IMechE Accreditation Lead for Edinburgh Napier University
  • IMechE Academic Liaison Officer for Edinburgh Napier University
  • Scottish Interconnect Student Award Finalist
  • Heriot Watt University PhD James Watt Prize

Publications 📚

  • Abolle-Okoyeagu, C J., Ojotule Onoja., & Chioma Onoshakpor. (2024, July). Navigating STEM: challenges faced by Nigerian female secondary school students. The International Academic Forum (IAFOR) 12th European Conference on Education (ECE2024).
  • Fatukasi, S., Abolle-Okoyeagu, C.J., & Pancholi K. A Comparative Study of Acoustic Emissions from Pencil Lead Breaks on Steel and Aluminum Substrates Using Signal Analysis. Petroleum Engineer. In SPE Annual Technical Conference and Exhibition (Paper accepted).
  • Abolle-Okoyeagu, C.J., Fatukasi, S., & Reuben, B. (2024, September). Measurement and Simulation of the Propagation of Impulsive Acoustic Emission Sources in Pipes. In Acoustics (Vol. 6, No. 3, pp. 620-637). Multidisciplinary Digital Publishing Institute.
  • Abolle-Okoyeagu, C.J., et al. (2024). Quantitative Analysis of the Hsu-Nielsen Source through Advanced Measurement and Simulation Techniques. Proceedings 8th International Conference on Mechanical, Aeronautical and Automotive Engineering, Malaysia.
  • Abolle-Okoyeagu, C.J., et al. (2022). Impact source identification on pipes using acoustic emission energy. e-Journal of Nondestructive Testing, 28(1).