Afshin Amiri | Remote Sensing | Academic Brilliance Star Award

Mr . Afshin Amiri | Remote Sensing | Academic Brilliance Star Award 

Ph.D. student , Laval University , Canada

Afshin Amiri is an accomplished researcher specializing in remote sensing, GIS, and natural hazards. Born on August 30, 1991, he has developed a solid academic foundation and expertise in various areas, including agriculture, land use/land cover change detection, and water resources. Afshin’s research leverages advanced techniques such as radar interferometry and cloud computing to address pressing environmental challenges. His work has been recognized through publications in prestigious journals and ongoing contributions to the scientific community.

Profile

Google Scholar

Strengths for the Award

  1. Diverse Expertise: Afshin Amiri’s research encompasses a wide range of critical topics within remote sensing and GIS, including flood susceptibility mapping, drought forecasting, and land cover change detection. This diversity showcases a deep understanding of the field and the ability to apply knowledge to various environmental challenges.
  2. Published Works: Afshin has authored several high-impact journal papers, demonstrating his ability to conduct rigorous research and contribute valuable insights to the scientific community. His publications in reputable journals like Journal of Hydrology and Science of The Total Environment indicate a strong research portfolio.
  3. Innovative Approaches: The use of advanced machine learning techniques and integration with remote sensing in his work shows a commitment to innovative and cutting-edge research. This is evident in his novel approaches to flood susceptibility mapping and drought zone forecasting.
  4. Ongoing Research: Afshin is actively involved in multiple research projects under review in prominent journals, indicating a continuous contribution to the field. His work on forest fires, soil erosion, and climate-driven water level estimation further underscores his commitment to addressing pressing environmental issues.
  5. Technical Proficiency: Afshin’s extensive skills in scientific software, satellite imagery processing, and cloud computing platforms like Google Earth Engine highlight his technical prowess, essential for modern environmental research.

Areas of Improvement 

  • Educational Background: While Afshin has solid academic credentials, improving his academic scores could have strengthened his profile. Enhancing this aspect, possibly through further education or certifications, could make his candidacy even more robust.
  • Independent Research: Many of Afshin’s published works are collaborative. While collaboration is essential, more independent research or leading-author publications could further demonstrate his leadership and expertise in the field.

Broader Impact: While Afshin’s research is impactful within the scientific community, emphasizing the broader societal or policy implications of his work could enhance his profile. This might include engagement in public outreach or contributions to policy-making in environmental management.

Education 

Afshin Amiri holds a BSc in Rangeland and Watershed Management from Razi University, Kermanshah, Iran, completed in 2013 with a GPA of 15.13/20. He furthered his education with an MSc in Remote Sensing and Geographic Information System from the University of Tehran, Tehran, Iran, in 2019, where he achieved a GPA of 16.5/20. His master’s thesis focused on identifying and characterizing active tectonics of the Dehshir fault using remote sensing data, earning a score of 18.5/20.

Experience 

Afshin Amiri has extensive experience in remote sensing and GIS, focusing on environmental monitoring and natural hazard assessment. His expertise includes radar interferometry, flood susceptibility mapping, and agricultural land management. Afshin’s research applies innovative tools such as machine learning and cloud computing (Google Earth Engine) to integrate various data sources and provide actionable insights for sustainable development and disaster risk reduction.

Research Interests 

Afshin Amiri’s research interests encompass a wide range of topics within remote sensing and GIS. He is particularly focused on:

  • Remote Sensing 📡
  • Agriculture 🌾
  • Geographic Information System 🗺️
  • Land Use/Land Cover Change Detection 🌍
  • Water Resources 💧
  • Cloud Computing (Google Earth Engine) ☁️
  • Natural Hazards 🌪️
  • Radar Interferometry (band C and L) 📶
  • Forest Monitoring 🌳
  • Flood Susceptibility Mapping 🌊

Awards 

Afshin Amiri’s contributions to the field have been recognized through various nominations and accolades, reflecting his commitment to advancing remote sensing and GIS applications. He continues to push the boundaries of research, with ongoing efforts being recognized by the academic community.

Publications 

Afshin Amiri has published several significant papers in renowned journals, showcasing his contributions to the field:

  • A Novel Machine Learning Tool for Current and Future Flood Susceptibility Mapping by Integrating Remote Sensing and Geographic Information Systems (2024). Journal of Hydrology. Link. Cited by: 0 articles.
  • Advanced Forecasting of Drought Zones in Canada Using Deep Learning and CMIP6 Projections (2024). Climate. Link. Cited by: 0 articles.
  • Forecasting Monthly Fluctuations of Lake Surface Areas Using Remote Sensing Techniques and Novel Machine Learning Methods (2021). Theoretical and Applied Climatology. Link. Cited by: 20 articles.
  • Mapping the Spatial and Temporal Variability of Flood Susceptibility Using Remotely Sensed Normalized Difference Vegetation Index and the Forecasted Changes in the Future (2021). Science of The Total Environment. Link. Cited by: 15 articles.
  • Prognostication of Shortwave Radiation Using an Improved No-Tuned Fast Machine Learning (2021). Sustainability. Link. Cited by: 10 articles.

         Lake Surface Area Forecasting Using Integrated Satellite-SARIMA-Long-Short-Term Memory Model (2021). Link. Cited by: 5 articles.

Conclusion

Afshin Amiri is a strong candidate for the Research for Academic Brilliance Star Award due to his diverse research portfolio, innovative methodologies, and technical expertise. His contributions to remote sensing and GIS, especially in flood mapping and environmental monitoring, are notable and impactful. While there are areas for potential growth, particularly in independent research and broader impact, his ongoing work and commitment to advancing the field make him a deserving contender for the award.