Feng Guo | Engineering | Best Researcher Award

Dr. Feng Guo | Engineering | Best Researcher Award

Dr. Feng Guo | Engineering | Lecturer at Jimei University | China

Dr. Feng Guo is a leading researcher in the field of aerospace propulsion and hybrid energy systems, with extensive experience in turbine engines, advanced flight propulsion control, and multi-fuel energy technologies. With a background in integrated aircraft and propulsion system analysis, Dr. Guo has established a strong reputation for bridging theoretical innovation with practical aerospace engineering solutions. His multidisciplinary approach combines aerodynamics, energy conversion, and propulsion system design to address current and future challenges in aviation and sustainable energy systems. A prolific academic with an active presence in international research forums, Dr. Guo’s contributions are well recognized for their depth, relevance, and potential global impact.

Academic Profile:

ORCID

Education:

Dr. Guo earned his doctoral degree in Aerospace Propulsion from a distinguished academic institution known for its excellence in engineering and scientific research. His academic journey was driven by a deep interest in propulsion integration, leading to his specialization in turbine-based combined cycle systems and their performance under real-world operational conditions. During his graduate and postgraduate studies, Dr. Guo developed expertise in propulsion control, hybrid engine systems, and dynamic inlet/engine coupling. His doctoral research laid the foundation for his future work in advanced propulsion optimization and sustainable fuel integration.

Experience:

Dr. Guo has held key research and academic positions at renowned aerospace and engineering organizations, where he has led and participated in numerous high-impact research initiatives. His work focuses on propulsion system optimization, energy-efficient turbine technologies, and hybrid electric engine configurations. He has collaborated on international projects involving hydrogen and ammonia fuel systems, and contributed to experimental and simulation-based studies on turbine film cooling and ramjet performance. In addition to his research, Dr. Guo has actively reviewed publications for top-tier journals and contributed to academic conferences, sharing his insights on innovative propulsion solutions and flight control mechanisms. His experience also includes mentoring students and coordinating interdisciplinary research teams in propulsion and aerodynamics.

Research Interest:

Dr. Guo’s research interests lie in the development and optimization of advanced propulsion systems, including turbine-based combined cycle (TBCC) engines, hybrid electric propulsion, and sustainable fuel technologies such as hydrogen and ammonia. He is particularly focused on the aerodynamic-propulsion integration of aircraft, thrust-matching techniques, and control law design for variable-geometry engines. Another core area of his research involves performance evaluation through simulation and experimental methods, targeting both atmospheric and near-space flight vehicles. Dr. Guo continues to explore solutions that reduce environmental impact while enhancing propulsion efficiency and operational flexibility, positioning his work at the intersection of aerospace innovation and sustainable engineering.

Award:

Dr. Guo has been recognized for his contributions to the aerospace and energy engineering sectors through nominations and acknowledgments in academic and professional circles. His research excellence, collaborative approach, and commitment to addressing complex engineering problems have earned him distinction among peers. He has been an invited reviewer for international scientific journals and is actively involved in engineering societies that promote advanced propulsion technologies and sustainable energy research. Dr. Guo’s achievements reflect not only technical skill but also leadership in driving interdisciplinary research and mentoring future engineers.

Selected Publications:

  • Optimization Methodology of Wide-Speed Scramjet Engine Based on Aerodynamic/Control Coupling, Applied Thermal Engineering, published 2025, 23 citations

  • Thrust-Matching and Optimization Design of Turbine-Based Combined Cycle Engine with Trajectory Optimization, International Journal of Turbo and Jet Engines, published 2024, 18 citations

  • Flight Analysis and Optimization Design of Vectored Thrust eVTOL Based on Cooperative Flight/Propulsion Control, Aerospace Science and Technology, published 2024, 31 citations

  • Analysis and Suppression of Thrust Trap for Turbo-Ramjet Mode Transition with the Integrated Optimal Control Method, Aerospace, published 2023, 27 citations

Conclusion:

Dr. Feng Guo has made substantial contributions to the advancement of propulsion and hybrid aerospace systems through a combination of rigorous research, innovative thinking, and collaborative efforts. His work addresses critical challenges in modern aviation, including fuel efficiency, system integration, and the development of environmentally responsible propulsion technologies. With a strong record of high-impact publications, international collaborations, and academic leadership, Dr. Guo continues to influence the direction of aerospace engineering and energy systems research. He remains committed to pursuing transformative solutions that align with the future of sustainable and high-performance aerospace applications.

 

 

Shivam Aggarwal | Engineering | Best Researcher Award

Dr. Shivam Aggarwal | Engineering | Best Researcher Award

Research Scholar | J. C. Bose University of Science and Technology, YMCA | India

Shivam Aggarwal is a dedicated Mechanical Engineer with a robust academic background and industry experience. He holds a Master’s degree in Mechanical Engineering and is in the process of completing his Ph.D. His expertise lies in mechanical design, statics, dynamics, thermodynamics, and materials science. Throughout his career, he has excelled in both practical engineering and academia, combining theoretical knowledge with hands-on experience in designing and testing mechanical systems. Currently, he serves as an Assistant Professor at the Echelon Institute of Technology, where he imparts knowledge to future engineers. Known for his commitment to academic excellence, research, and student mentorship, Shivam seeks to contribute further to the academic community, particularly in areas like finite element analysis and sustainable engineering.

Profile

Scholar

Education
Shivam Aggarwal’s educational journey showcases his deep commitment to the field of mechanical engineering. He pursued his Ph.D. in Mechanical Engineering at J.C. Bose University of Science & Technology, Faridabad, India, and is currently in the final stages of his thesis submission in 2024. Prior to that, he earned his Master’s in Mechanical Engineering from the same institution in 2021, specializing in advanced mechanical concepts. His academic foundation was further solidified by his Bachelor’s degree in Mechanical Engineering from Satyug Darshan Institute of Engineering & Technology, Faridabad, in 2019. Additionally, Shivam completed a Diploma in Mechanical Engineering from Government Polytechnic Manesar, Gurugram, in 2016, which provided him with a strong practical base. His education underscores a continuous pursuit of knowledge and excellence in mechanical engineering.

Experience
Shivam Aggarwal’s professional journey spans both academia and industry. He currently serves as an Assistant Professor in the Mechanical Engineering Department at Echelon Institute of Technology, where he has been shaping the minds of future engineers since June 2024. His role includes designing curricula, delivering lectures on subjects such as thermodynamics and fluid mechanics, conducting research, and mentoring students. Before venturing into academia, Shivam gained valuable industry experience. He worked as a Graduate Engineer Trainee at Frick India Pvt Ltd (January–May 2019), where he honed his skills in mechanical design and system development. He also worked as a Trainee at Dauji Metal Pvt Ltd and Forgewell India Pvt Ltd, further strengthening his practical knowledge in mechanical engineering processes, testing, and evaluation.

Research Interest
Shivam’s research interests lie in several core areas of mechanical engineering. He is particularly passionate about finite element analysis (FEA), sustainable engineering, and the application of advanced materials in automotive and mechanical systems. His work often focuses on optimizing mechanical components for performance and sustainability. He has explored the application of composite materials in electric rickshaw leaf springs, automotive leaf spring design, and energy-efficient systems. Additionally, his interest extends to robotics, automation, and the integration of IoT for smart systems in agriculture. These research pursuits reflect his dedication to advancing mechanical engineering practices through innovation and sustainability.

Award
Shivam Aggarwal’s dedication to excellence has been recognized through several prestigious awards and nominations. Notably, he won the Best Innovation Award in 2022 at YMCA University for his work in mechanical engineering. He has also received accolades for his performance in academic and professional assessments. Shivam passed the GATE exam in Mechanical Engineering, a significant achievement that highlights his theoretical and practical expertise. His contributions to mechanical engineering have earned him eligibility for the University Research Scholarship at YMCA University. Additionally, Shivam has received multiple certifications, including ISRO-IIRS Certification, and has excelled in national-level exams like the National Olympiad in Mechanical Engineering by ASSOCHAM and TCS National Qualifier Test.

Publication
Shivam Aggarwal has contributed to several high-quality publications in mechanical engineering. His research is widely acknowledged within the academic community. Some of his notable publications include:

  1. Sandwich Composite Material Analysis for its Application in Electric Rickshaw Leaf Spring, Taylor & Francis Journal of Mechanics Based Design and Structures, SCIE (2024).
  2. Analysis of Glass Fiber-reinforced Composite Leaf Springs in a Light Commercial Vehicle, Journal of Scientific Report, Nature Publishing Group, UK, SCIE (2024).
  3. Design and Analysis of Load Stiffness Tester for Dual Applications in Measurement of Spring Stiffness and Walnut Shell Stiffness, Lecture Notes in Mechanical Engineering (Springer Nature), Scopus (2024).
  4. Investigation regarding the Replacement of Composite Material Leaf Springs with Spring Steel Leaf Springs in Automotive Vehicles: A Review, IOP Conference Series Material Science & Engineering, indexed in WoS (2024).
  5. Optimization of Various Percentages of Fibers in Fiber Reinforced Composite Material Leaf Springs in Vehicles, IOP Conference Series Material Science & Engineering, indexed in WoS (2024).
  6. IoT-Based Treadle Pump and Smart Flow Measurement Device for Irrigation, Proceedings of the 10th International Symposium on Fusion of Science and Technology (2024).

These works highlight Shivam’s expertise in materials science, mechanical design, and sustainable engineering, with several being widely cited in related research fields.

Conclusion
Shivam Aggarwal is a highly accomplished Mechanical Engineer and academic, whose work spans both practical engineering and cutting-edge research. His experience as an educator, coupled with his academic achievements and industry exposure, has equipped him with a unique perspective on engineering solutions. Through his research, publications, and patents, Shivam continues to contribute meaningfully to the field of mechanical engineering. His strong foundation in design, materials science, and sustainable engineering, combined with his passion for teaching and innovation, makes him a valuable asset to the academic and engineering communities. As he advances his career, Shivam remains committed to inspiring and mentoring the next generation of engineers, fostering their academic and professional growth.