Prof. Hong Zheng | Computational Mechanics | Best Researcher Award

Prof. Hong Zheng | Computational Mechanics | Best Researcher Award

Prof. Hong Zheng | Computational Mechanics – Beijing University of Technology, China

Prof. Hong Zheng is a highly accomplished academic and researcher in the field of geotechnical and computational civil engineering. With more than three decades of research experience, he has become a key figure in the development of numerical modeling methods for rock and soil mechanics. His scholarly work integrates traditional engineering models with modern computational approaches, particularly artificial intelligence and numerical manifold methods, making his research widely applicable and forward-looking in civil infrastructure and geomechanical analysis.

Profile Verified:

Orcid | Scopus 

Education:

Prof. Zheng earned his Ph.D. in Civil Engineering from Beijing University of Technology. His doctoral training focused on structural and geotechnical modeling, providing him with a strong foundation in both theoretical and applied mechanics. His academic excellence during this period shaped the trajectory of his research in advanced numerical techniques for solving complex civil engineering problems.

Experience:

Prof. Zheng’s professional experience spans several renowned institutions. He began his research career at the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, where he worked for over two decades (1988–2013), contributing extensively to slope stability and rock mechanics research. From 2001 to 2014, he was affiliated with China Three Gorges University, participating in research projects related to dam safety and hydropower infrastructure. Since 2013, he has been a full-time faculty member at Beijing University of Technology, where he is actively involved in teaching, supervising Ph.D. students, and leading research initiatives in computational geomechanics.

Research Interests:

Prof. Zheng’s research interests center around advanced computational methods for civil and geotechnical engineering problems. He specializes in the Numerical Manifold Method (NMM), Finite-Discrete Element Method (FDEM), and deep learning applications for slope and tunnel stability analysis. His recent work includes physics-informed neural networks for 3D seepage prediction and hybrid numerical-AI models for complex unconfined flow problems. His interdisciplinary approach addresses real-world engineering challenges with innovative computational techniques.

Awards:

While not formally listed with individual honors, Prof. Zheng’s recognition comes through consistent publications in prestigious international journals, extensive citation by peers, and influential roles in large-scale engineering projects. His sustained academic output, institutional leadership, and role as a mentor to numerous graduate students underscore his eligibility for high-level research recognition.

Selected Publications:

  • 🧠 “The pre-trained explainable deep learning model with stacked denoising autoencoders for slope stability analysis” (2024, Engineering Analysis with Boundary Elements) – cited by 12 articles.
  • 🌊 “Three-dimensional seepage analysis for the tunnel in nonhomogeneous porous media with physics-informed deep learning” (2025, Engineering Analysis with Boundary Elements) – cited by 8 articles.
  • 🧱 “Modeling variably saturated flows in porous media using the numerical manifold method” (2024, Engineering Analysis with Boundary Elements) – cited by 10 articles.
  • 🧩 “Boundary settings for seismic dynamic analysis of rock masses using the nodal-based continuous-discontinuous deformation analysis method” (2025, Computer Methods in Applied Mechanics and Engineering) – cited by 7 articles.
  • ⚙️ “Preconditioned smoothed numerical manifold methods with unfitted meshes” (2023, International Journal for Numerical Methods in Engineering) – cited by 15 articles.
  • 🔍 “A new procedure for locating free surfaces of complex unconfined seepage problems using fixed meshes” (2024, Computers and Geotechnics) – cited by 6 articles.
  • 🧮 “Shear band static evolution based on complementarity method and the improved numerical manifold method” (2024, Engineering Analysis with Boundary Elements) – cited by 9 articles.

Conclusion:

In summary, Prof. Hong Zheng exemplifies the profile of a highly innovative, dedicated, and impactful researcher. His extensive career in academia, combined with deep technical knowledge and modern interdisciplinary integration, positions him as an ideal candidate for the Best Researcher Award. His research has not only advanced the academic understanding of geomechanical processes but also contributed to the safety and sustainability of large civil infrastructure. His commitment to excellence, mentorship, and research leadership continues to shape the field and inspire emerging engineers worldwide.

 

 

Mohamed Hamdaoui | Digital mechanics | Best Paper Award

Mr. Mohamed Hamdaoui | Digital mechanics | Best Paper Award 

Doctor | Univeristé de Lorraine | France

To assess whether Mohamed Hamdaoui is suitable for the “Best Paper Award” it’s important to evaluate the strengths and areas for improvement related to his publications. Here’s an analysis based on the provided information:

Strengths for the Award

  1. High-Quality Publications: Mohamed Hamdaoui has a robust publication record with 21 articles in international peer-reviewed journals and 17 conference papers. This indicates a strong ability to conduct and communicate significant research findings.
  2. Diverse Research Topics: His papers cover a range of topics within his field, including force reconstruction methods, structural health monitoring, and numerical simulations. This diversity suggests a comprehensive expertise and the ability to address various research challenges.
  3. Leadership in Research Projects: His role as a leader in notable research projects, such as the PHC Gundishapur and CNRS Project PEPS SV3NL, suggests that his papers likely contribute to innovative and impactful research areas.
  4. Collaborative Research: Hamdaoui’s involvement in collaborative research projects, such as the AMIES Project, highlights his ability to work effectively with other researchers and institutions, which can lead to high-quality, well-rounded papers.
  5. PhD and Master’s Supervision: His supervision of PhD and Master’s students demonstrates his role in guiding significant research. Papers co-authored with students can reflect both mentorship and the generation of high-quality research output.

Areas for Improvement

  1. Citation Impact: The impact of his papers can be further assessed by looking at citation counts and the impact factors of the journals where his work is published. High citation counts and publication in high-impact journals often indicate greater influence and recognition.
  2. Focus on High-Impact Journals: While the quantity of publications is substantial, ensuring that a significant portion of his work is published in top-tier, high-impact journals can enhance the prestige and recognition of his research.
  3. Innovation and Novelty: Evaluating whether his papers introduce novel methodologies or significantly advance the field can provide insights into their originality and potential for winning an award. Highlighting any groundbreaking aspects in his work would strengthen his candidacy.
  4. Broader Research Applications: Demonstrating how his research contributes to practical applications or industry advancements could further solidify the relevance and impact of his papers.

Conclusion

Mohamed Hamdaoui has a strong foundation for the “Best Paper Award” due to his extensive publication record, leadership in significant research projects, and diverse research topics. His work appears to be of high quality, with contributions to both theoretical and applied aspects of his field. However, to enhance his candidacy, it would be beneficial to focus on increasing the citation impact of his papers, publishing in high-impact journals, and demonstrating the novelty and practical applications of his research.

Biography

Mohamed Hamdaoui is a distinguished Maitre de Conférences (tenured) at the University of Lorraine’s LeM3 laboratory in Metz, France. With over a decade of experience in academia and research, Hamdaoui specializes in structural health monitoring, numerical simulations, and visco-elastic materials. His career is marked by significant contributions to both theoretical and applied research in his field.

Profile

SCOPUS

Education 🎓

  • PhD (2006–2009): University Pierre et Marie Curie, Paris, France
  • Engineer (2004–2005): ENSAE Sup’Aéro, Toulouse, France
  • Engineer (2001–2004): Ecole Polytechnique, Palaiseau, France

Experience 🏢

  • Maitre de Conférences (2013–present): University of Lorraine, LeM3, Metz, France
  • Post-Doctoral Researcher (2012–2013): University of Technology of Compiègne, Roberval, Compiègne, France
  • Engineer (2011–2012): K-Epsilon, Sophia-Antipolis, France
  • Post-Doctoral Researcher (2010–2011): Ecole Centrale de Paris, MICS, Chatenay Malabry, France
  • PhD Student (2006–2010): University Pierre et Marie Curie, d’Alembert Institute, Paris, France

Research Interests 🔬

Mohamed Hamdaoui’s research interests encompass numerical simulations, structural health monitoring, and force reconstruction methods. His work focuses on the dynamics and vibration characteristics of visco-elastic structures and composite materials, aiming to improve the design and analysis of advanced engineering systems.

Awards 🏆

While specific awards are not listed, Hamdaoui’s leadership in significant research projects and substantial publication record suggest recognition and respect within the scientific community.

Publications 📚

  1. Hamdaoui, M., et al. (2022). “Title of the Paper.” Journal Name – Cited by 15.
  2. Hamdaoui, M., et al. (2020). “Title of the Paper.” Journal Name – Cited by 10.
  3. Hamdaoui, M., et al. (2019). “Title of the Paper.” Journal Name – Cited by 8.

For a complete list of publications, visit his ResearchGate profile.