Jian Qin | Structural analysis, Nonlinear calculation | Excellence in Scientific Innovation Award

Prof. Dr. Jian Qin | Structural analysis, Nonlinear calculation | Excellence in Scientific Innovation Award

Senior Technical Expert at State Grid Electric Power Engineering Research Institute Co., Ltd, China

Qin Jian is an esteemed researcher and senior technical expert specializing in power transmission and substation engineering. With a background in solid mechanics and mechanical engineering, he has contributed significantly to the advancement of transmission line equipment and nonlinear mechanical studies. His expertise lies in developing innovative solutions for complex power transmission challenges, leading several key research projects in the field. Over the years, his work has been recognized with multiple prestigious awards, demonstrating his influence in the domain of electrical power infrastructure and engineering mechanics.

Profile

Scopus

Education

Qin Jian pursued his higher education in solid mechanics at Peking University, where he earned his doctoral degree in 2009. His research during this period focused on advanced computational methods in mechanical analysis, laying a strong foundation for his later work in engineering applications. Following his PhD, he undertook postdoctoral research at the University of Science and Technology Beijing, further refining his expertise in mechanical engineering and structural analysis.

Experience

After completing his postdoctoral studies, Qin Jian joined the China Electric Power Research Institute in 2011, where he has been actively engaged in research and development related to power transmission and substation engineering. His professional journey has been marked by significant contributions to the study of nonlinear mechanics in transmission line construction and the development of specialized equipment for efficient power infrastructure deployment. As a senior technical expert, he has played a vital role in multiple national-level projects, enhancing the safety, efficiency, and reliability of electrical power networks.

Research Interests

Qin Jian’s research interests encompass power transmission line equipment, nonlinear mechanical behavior in construction, and the development of intelligent engineering solutions. His studies focus on improving the efficiency of material transport in complex terrains using cableway systems, as well as optimizing structural integrity through advanced computational modeling. His work integrates experimental research, numerical simulation, and field applications, aiming to enhance both theoretical understanding and practical implementation in transmission engineering.

Awards

Qin Jian’s outstanding contributions to power transmission engineering have been recognized through several prestigious awards. In 2021, he received the second prize in the State Grid Science and Technology Progress Awards for his pioneering work on aerial cableway systems in transmission line construction. His innovative safety assessment techniques and intelligent design systems for cable transport earned him the second prize in the China Electric Power Construction Science and Technology Progress Awards in 2020. Additionally, he has been honored with multiple accolades from the China Electric Power Research Institute for his advancements in nonlinear mechanics and engineering design, further solidifying his reputation as a leading expert in his field.

Publications

Qin Jian has authored numerous high-impact journal articles, contributing to the advancement of power transmission engineering and nonlinear mechanics. Below are seven selected publications along with their respective journals and publication years:

Qin J., Qiao L., et al. (2025). “Calculation Method and Experimental Research on Strand Breakage in Large Cross-section Conductors Considering Contact Between Strands.” Engineering Failure Analysis.

Qin Jian, Qiao Liang, et al. (2024). “Analysis, Simulation, and Experimental Research on the Mechanisms of Lantern-shaped Strand Defects in the Conductor Construction of Transmission Line.” Structures.

Qin J., Zhang Q. D., Huang K. F. (2011). “Oblique and Herringbone Buckling Analysis of Steel Strip by Spline FEM.” Journal of Iron and Steel Research (International).

Qin J., Zhang Q. D., Huang K. F. (2012). “Nonlinear Spline Finite Element Method for Ribbing of Cold-Rolled Coils.” Journal of Iron and Steel Research (International).

Qin Jian, Xia Yongjun. (2013). “Suspension Analysis Matrix Iteration Method Based on Segmented Catenary Theory.” Journal of Engineering Design.

Qin Jian, Qiao Liang, Jiang Ming, et al. (2019). “Multi-support Cableway Load Calculation Method and Tension Imbalance Effect Analysis.” China Safety Science and Technology Journal.

Qin Jian, Zhang Feikai, Li Qiying, et al. (2022). “Automatic Path Planning Method for Cargo Ropeways Based on Terrain Adaptation.” Journal of Southwest Jiaotong University.

Conclusion

Based on his academic excellence, innovative research contributions, leadership in national projects, and recognized impact in engineering sciences, Qin Jian is highly suitable for the Research for Excellence in Scientific Innovation Award. His work in power transmission, structural mechanics, and computational methodologies has significantly advanced the field, making him a strong candidate for recognition in scientific innovation.

Zhi Huang | Structural Engineering | Best Paper Award

Assoc Prof. Dr. Zhi Huang | Structural Engineering | Best Paper Award

Dean | Hunan University of Science and Technology | China

 

Research Paper Review: Best Paper Award Evaluation for Associate Professor Zhi Huang, Ph.D., P.E.

Strengths for the Award:

  1. Extensive Research Contributions: Associate Professor Zhi Huang has demonstrated an impressive breadth of research in the field of structural engineering, particularly in seismic performance and composite structures. His publication record includes over 10 high-impact journal papers, such as those in Steel and Composite Structures and Structures. His research addresses critical issues in earthquake-resistant design and the behavior of high-rise and mega structures under severe conditions.
  2. Innovative Methodologies: Huang’s work employs advanced methodologies, including the use of GA-BP neural networks for hysteresis performance studies and FEM analysis for seismic performance. This indicates a strong commitment to integrating cutting-edge technology into his research, enhancing the practical relevance and accuracy of his findings.
  3. Significant Research Funding: The substantial grants from prestigious sources like the National Natural Science Foundation of China and the Hunan Provincial Natural Science Foundation underscore the high value and impact of Huang’s research. His role as PI in several high-profile projects demonstrates his leadership and ability to secure funding for significant research initiatives.
  4. Professional Affiliations and Honors: Huang’s roles as an editorial board member for notable journals and his receipt of awards like the “Young Charming Teacher” and “High-level talent development support plan” reflect his recognized contributions to the field and his influence within the academic community.

Areas for Improvement:

  1. Publication Diversity: While Huang’s publications are robust in structural engineering and seismic performance, expanding his research into interdisciplinary areas or emerging topics within civil engineering could broaden his impact and appeal to a wider audience.
  2. Collaborative Opportunities: Increased collaboration with international researchers or industry practitioners could enhance the applicability of his research findings and lead to innovative solutions that address global challenges in structural engineering.
  3. Engagement in Emerging Technologies: Further exploration of emerging technologies such as AI in structural health monitoring or smart materials could position Huang’s research at the forefront of future advancements in civil engineering.
  4. Broader Dissemination: Although his research is published in high-impact journals, increasing efforts in publicizing findings through conferences, workshops, and interdisciplinary platforms could enhance the visibility and practical application of his work.

Conclusion:

Associate Professor Zhi Huang’s research in structural engineering, particularly in seismic performance and composite structures, is both pioneering and impactful. His innovative methodologies, substantial research funding, and professional accolades support his candidacy for the Best Paper Award. By addressing the areas for improvement, such as broadening his research scope and enhancing collaborative and dissemination efforts, Huang could further solidify his position as a leading researcher in his field. Overall, his contributions represent a significant advancement in earthquake-resistant design and structural performance, making him a strong contender for the award.

Biography

Associate Professor Zhi Huang, Ph.D., P.E., is a distinguished academic in civil engineering with expertise in structural engineering and seismic design. Currently serving at Hunan University of Science and Technology, Dr. Huang has a strong background in earthquake-resistant designs and composite structures. His innovative research and significant contributions to the field have earned him recognition as a leading expert in his domain.

Profile

SCOPUS

Education 🎓

  • Ph.D. in Civil Engineering (Structural Engineering)
    Central South University, China (Sept. 2011 – Dec. 2017)
    Advisor: Jiang Lizhong
  • Ph.D. Joint Training Program in Civil Engineering (Structural Engineering)
    The Pennsylvania State University, USA (Mar. 2015 – Apr. 2016)
    Advisor: Y. Frank Chen
  • M.S. in Civil Engineering (Structural Engineering)
    Changsha University of Science & Technology, China (Sept. 2008 – June 2011)
    Advisor: Lei Guangyu
  • B.E. in Civil Engineering
    Jiangsu University of Science and Technology, China (Sept. 2004 – June 2008)

Experience 🏆

Dr. Huang has served as an Associate Professor and Lecturer at the School of Civil Engineering, Hunan University of Science and Technology, since 2017. His roles involve advanced research in seismic performance and the development of innovative structural solutions. He has also participated in significant construction and reconstruction projects, contributing his expertise to various engineering challenges.

Research Interests 🔬

Dr. Huang’s research focuses on:

  • Seismic Design: Earthquake-resistant designs for high-rise and super high-rise buildings and composite structures.
  • Integrated Design and Construction: Developing integrated approaches for construction and structural performance.
  • Software Development: Creating tools and software for enhanced structural analysis and design.

Awards 🏅

  • High-level Talent Development Support Plan: Recognized as a young innovative talent at Hunan University of Science and Technology.
  • Young Charming Teacher: Awarded by Hunan University of Science and Technology in 2018 for excellence in teaching and research.

Publications 📚

  1. Study on hysteresis performance of four-limb CFST latticed column-box girder joints based on GA-BP neural network
    Structures, 2024, 67: 107007
  2. Experimental study on the seismic performance of concrete filled steel tubular laced columns
    Steel and Composite Structures, 2018, 26(6), pp. 719-731
  3. Studies on Restoring Force Model of Concrete Filled Steel Tubular Laced Column to Composite Box-Beam Connection
    Steel and Composite Structures, 2016, 22(6), pp. 1217-1238
  4. Mechanical behaviour research of long span prestressed steel–concrete composite beam
    Materials Research Innovations, 2014, 18(S2), pp. 28-32
  5. Seismic damage model and tests of CFST latticed columns under repeated load
    Journal of Vibration and Shock, 2022, 41(19), pp. 163-170
  6. Studies on seismic damage model of concrete-filled steel tube laced columns
    Chinese Journal of Applied Mechanics, 2022, 39(4), pp. 717-725
  7. Aseismic performance test and FEM analysis of concrete-filled steel tube lattice columns
    Journal of Natural Disasters, 2022, in press
  8. Tests for aseismic behavior of connection joints composed of concrete-filled steel tubular lattice columns and composite box girders
    Journal of Vibration and Shock, 2014, 33(18), pp. 156-163
  9. Correlation Research between Landslide Thrust and Invading Width of Rock for Rock-Socketed Anti-sliding Pile in Steep Slope
    Electronic Journal Geotechnical Engineering, 2013, 18(Z), pp. 5957-5966
  10. Mechanical Behavior Research for the Interior Joint of New Light-weight Portal Rigid Frame (Ⅱ)
    Applied Mechanics and Materials, 2013, Vols. 351-352, pp. 454-459