Naresh Kumar| Mechanical Engineering | Best Researcher Award

Mr.Naresh Kumar| Mechanical Engineering | Best Researcher Award

PhD (Engineering) Research Scholar |Amity University | India

Naresh Kumar is a dedicated and result-oriented professional with over 13 years of experience in teaching, research, and academic administration. He currently serves as an Assistant Professor and Maintenance Manager at Kasturi Shikshan Sanstha in Pune, Maharashtra. With expertise in areas such as Strength of Materials, Machine Design, CFD, and Engineering Mechanics, Naresh is passionate about enhancing educational practices. He has also contributed to the field of research, with numerous publications in prestigious journals. His skills in CAD/CAM, FEM, and ANSYS further complement his teaching. Naresh actively participates in various workshops, FDPs, and short-term courses to keep up with the latest developments in the mechanical engineering field. His goal is to continue fostering academic growth and contribute to the advancement of the engineering community.

 

Profile

Orcid

Scopus

Education

Naresh Kumar’s educational journey began with his matriculation from S.B.S.N. Bhiwani, Haryana, where he achieved 58.5% in 2002, followed by a senior secondary education from S.K.G.S.S. Bhiwani, Haryana with 57.2% in 2005. He earned his Bachelor’s degree in Mechanical Engineering from B.I.T.S, Bhiwani, Haryana (MDU Rohtak) in 2009, securing a 75.32% score. Naresh continued his academic pursuit with an M.Tech. in Manufacturing and Automation from U.I.E.T. Rohtak (MDU Rohtak) in 2011, with 70.06%. He then completed his Ph.D. in Engineering from Amity University, Jaipur, Rajasthan, where he achieved a remarkable 95.70% in course work, graduating in 2022. His educational background equips him with a strong foundation in mechanical engineering principles, and his continuous drive for knowledge fuels his passion for teaching and research.

 

Experience

Naresh Kumar brings over 13 years of experience in teaching and research, with a primary focus on mechanical engineering. He has taught undergraduate and postgraduate students across various subjects such as Strength of Materials, Machine Design, CFD, and Dynamics of Machines. As an Assistant Professor cum Maintenance Manager at Kasturi Shikshan Sanstha, Pune, Naresh has played a key role in maintaining academic excellence and overseeing the mechanical workshop. His administrative experience also includes overseeing NAAC accreditation and contributing to the exam department. His involvement extends to conducting academic duties such as Centre Superintendent responsibilities. Naresh has been an active contributor to academic events, serving on the organizing committee of the National Conference RTME-2013. His academic and administrative work is complemented by his role as a member of editorial boards for internationally recognized journals. His vast experience is rooted in both practical applications and innovative research in mechanical engineering.

 

Research Interests

Naresh Kumar’s primary research focus lies in the field of advanced manufacturing processes, specifically in Friction Stir Welding (FSW) and its application to dissimilar materials like aluminium and copper alloys. His work investigates the thermal and mechanical properties of welded joints, emphasizing the role of additives in improving welding outcomes. Naresh has published extensively on the topic, with significant contributions to journals like the METSZET Journal and the Journal of Technology. He also explores the computational aspects of mechanical engineering, utilizing tools like ANSYS and CFD for simulating and optimizing engineering designs. His recent research delves into topics like the exergy analysis of combined cycle power plants and cryocoolers. Naresh’s research aims to bridge the gap between theoretical analysis and practical application, contributing to the advancement of manufacturing processes, thermal management, and material science. His work is recognized internationally, with a focus on improving efficiency and sustainability in engineering applications.

 

Awards

Naresh Kumar has earned various awards and honors throughout his academic and professional career. His research contributions have been widely recognized in the form of numerous journal publications, many of which are indexed in Scopus. In 2024, his paper on “Friction Stir Welding of Aluminium and Copper Alloys” was published in METSZET Journal, highlighting his expertise in welding technologies. He is a member of editorial boards for prestigious journals like IJRITCC and TIJER, where his work is acknowledged for its impact on the field. Naresh’s role in organizing national conferences like RTME-2013 further underscores his leadership and commitment to advancing engineering education. Additionally, he has earned multiple certificates for his participation in workshops and short-term courses, including those related to research, technical writing, and advanced mechanical systems. His achievements reflect a consistent dedication to excellence in both academia and research.

 

Publications

Analysis of reinforced friction stir welded joints of dissimilar Al and Cu-alloys by ANSYS software

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2025

Experimental optimization of the FSW parameters to weld the dissimilar Al- and Cu-alloys by using additives at their joints

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

Design and Heat Transfer Analysis of Reinforced Friction Stir Welded Joints using ANSYS Software

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

Experimental optimization of the FSW parameters to weld the dissimilar Materials by using additives at their joints

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

The Experimental Investigation on various additives used in Friction Stir Welded Joints of Aluminium and Copper Alloys

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

The friction stir welding of aluminium and copper alloys with use of various additives at the joints

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

Thermal Analysis of Friction Stir Welded Joints of Aluminum and Copper alloys

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

A Review on the Friction Stir Welding Processes used for joining the various dissimilar materials from the year 2017 to the year 2023

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2023

The copper alloys used in the friction stir welding processes: A review

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2022

Thermal Analysis of a Thermo-coustic Cryocooler

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2014

 

Conclusion

Naresh Kumar’s extensive publication record, active participation in academic and administrative roles, and ongoing professional development make him a highly suitable candidate for the “Best Researcher Awards.” His contributions to the fields of friction stir welding and material science, along with his commitment to academic excellence, clearly demonstrate his value as a leading researcher.

 

Tian-Bing Xu | Mechanical and Aerospace | Best Researcher Awards

Prof. Tian-Bing Xu | Mechanical and Aerospace | Best Researcher Awards

Ph.D. at Old Dominion University, United States

Dr. Tian-Bing Xu is an Associate Professor in the Department of Mechanical and Aerospace Engineering at Old Dominion University (ODU). He leads the Smart Materials & Intelligent Systems (SMIS) Laboratory, focusing on advanced technologies in smart materials, energy harvesting, and intelligent systems. Recognized among the top 2% of the most influential scientists worldwide, Dr. Xu has made significant contributions to energy conversion, renewable energies, and aerospace technologies. His interdisciplinary research and collaboration with organizations such as NASA and the Department of Defense have earned him numerous accolades, cementing his reputation as a leading researcher in his field.

Profile

Google Scholar

Education:

Dr. Xu’s academic journey began with a Diploma in Physics from Shandong University, China, followed by graduate work at the Chinese Academy of Sciences. He then moved to the United States, where he completed both his Master’s and Ph.D. in Materials Science and Engineering at The Pennsylvania State University. His Ph.D. research focused on developing electromechanical devices using electroactive polymers, under the guidance of Dr. Qiming Zhang. This education laid the foundation for his future work in advanced materials and intelligent systems, blending fundamental science with applied engineering solutions.

Experience:

Dr. Xu has over two decades of experience in academic and applied research. Since joining ODU in 2018 as an Associate Professor, he has led projects in smart materials, energy harvesting, and sensor technologies. Before ODU, he worked at NASA Langley Research Center and the National Institute of Aerospace in various capacities, contributing significantly to aerospace research. His work in these roles included leadership in developing piezoelectric materials and energy harvesting systems, with several projects transitioning to industrial applications. He also held a Senior Research Scientist position, which was critical in his collaboration with NASA on multiple innovations. His academic experience is further highlighted by multiple invited talks and keynote speeches.

Research Interests:

Dr. Xu’s research primarily focuses on smart materials and intelligent systems, with applications in energy harvesting, robotics, medical devices, and renewable energies. His work aims to develop materials and systems that can efficiently convert mechanical energy into electrical energy, particularly for use in structural health monitoring, offshore energy systems, and wearable technology. He is also deeply invested in advancing manufacturing technologies for these materials to increase their real-world applicability. Additionally, Dr. Xu’s research has expanded into exploring piezoelectric technologies for energy recovery, aiming to revolutionize both the aerospace and renewable energy industries.

Awards:

Dr. Xu has received numerous awards for his groundbreaking research. Notably, he was included in the Stanford University list of the top 2% of the most influential scientists worldwide. He has also been awarded research grants totaling over $12 million from prestigious organizations such as NASA, NSF, DOD, and various state agencies. His leadership in securing these grants, both as principal investigator and co-investigator, highlights his capacity to drive impactful research projects. Dr. Xu has also received the prestigious ONR Summer Faculty Fellowship and has been honored with awards for his patented technologies.

Publications:

Dr. Xu has published 58 peer-reviewed journal articles, 3 book chapters, and over 44 conference papers. His research has appeared in leading journals with high impact factors, contributing significantly to the advancement of materials science and engineering. A selection of his key publications includes:

A review of piezoelectric footwear energy harvesters: principles, methods, and applications, Sensors, 2023.

Proof Mass Effects on a Flextensional Piezoelectric Energy Harvester, IFAC-PapersOnLine, 2022.

A high density piezoelectric energy harvesting device from highway traffic—System design and road test, Applied Energy, 2021.

Piezoelectric energy harvesting from human walking by using a two-stage amplification mechanism, Energy, 2019.

Design, optimization, modeling, and testing of a piezoelectric footwear energy harvester, Energy Conversion and Management, 2018.

Conclusion:

Dr. Tian-Bing Xu’s achievements make him a highly deserving candidate for the Best Researcher Award. His pioneering work in smart materials, energy harvesting technologies, and advanced manufacturing places him at the forefront of scientific innovation. His leadership in securing substantial research grants, his prolific publication record, and his numerous patents underscore his significant contributions to both academic and practical advancements in his field. With continued growth in interdisciplinary research and broader global collaborations, Dr. Xu’s work promises to have an even greater impact on the future of technology and sustainable energy solutions.