Muhammad Tahir Naseem | Electronic Engineering | Best Research Article Award

Dr. Muhammad Tahir Naseem | Electronic Engineering | Best Research Article Award

Dr. Muhammad Tahir Naseem | Electronic Engineering | Research Professor at Yeungnam University | South Korea

Dr. Muhammad Tahir Naseem is a leading academic and researcher in the field of computer science, with a specialization in artificial intelligence, computer vision, and image processing. His work is recognized internationally for contributing to cutting-edge solutions in medical diagnostics, intelligent systems, and secure image communication. As a faculty member at Yeungnam University, Dr. Muhammad Tahir Naseem continues to advance knowledge through interdisciplinary research, impactful publications, and academic mentorship. With a strong foundation in theoretical and applied domains, he has consistently demonstrated excellence across various research activities and collaborative networks. His reputation for precision, innovation, and scholarly engagement reflects his commitment to both scientific inquiry and societal benefit.

Academic Profile:

Google Scholar

Education:

Dr. Muhammad Tahir Naseem completed his doctoral studies in Electrical and Computer Engineering, focusing on intelligent diagnostic systems and secure signal processing methodologies. His academic journey has been rooted in analytical depth and interdisciplinary orientation, combining core principles of artificial intelligence with real-world applications in healthcare technologies and multimedia systems. Prior to his doctoral research, he obtained strong foundational training in computing and electronics, equipping him with the technical competencies needed to work across a wide range of academic and industrial projects. His educational background laid the groundwork for a successful research career, which has since evolved through both theoretical development and experimental validations.

Experience:

Dr. Muhammad Tahir Naseem possesses extensive teaching and research experience in both national and international institutions. He has held academic roles that involve supervising graduate-level research, delivering specialized courses, and coordinating collaborative initiatives across departments and research labs. He has worked closely with multidisciplinary teams to execute research projects involving medical imaging, wireless communication, and intelligent systems. Dr. Muhammad Tahir Naseem’s academic service also includes peer reviewing for indexed journals and contributing to scientific program committees for international conferences. His experience has enabled him to develop and guide solutions that integrate AI models with practical outcomes in healthcare, communication systems, and data security.

Research Interest:

Dr. Muhammad Tahir Naseem’s primary research interests span artificial intelligence, computer vision, signal and image processing, and intelligent diagnosis. His current focus is on applying deep learning models to medical imaging for disease detection and prognosis, particularly in the areas of histopathology and pathological gait analysis. He is also exploring advancements in resource allocation for wireless communication systems using neural networks and fuzzy logic. Another area of interest includes secure image watermarking and digital authentication techniques using chaos theory and residue number systems. His interdisciplinary research is aimed at improving real-time diagnostic capabilities, data integrity, and resource efficiency in complex systems.

Award:

Dr. Muhammad Tahir Naseem has been consistently recognized for his academic excellence and research contributions in the field of intelligent systems. His work in medical image analysis and adaptive communication networks has earned appreciation from peers and international collaborators. He has been nominated for awards that acknowledge high-impact research, publication quality, and innovation in computing technologies. His leadership in collaborative projects and dedication to solving real-world problems through AI-driven solutions positions him as a strong candidate for academic and research-based honors. His research outputs not only contribute to academic knowledge but also deliver tangible benefits to healthcare and digital communication systems.

Selected Publications:

  • “Malignancy detection in lung and colon histopathology images using transfer learning with class selective image processing” – Published in 2022, with 241 citations

  • “Removal of random valued impulse noise from grayscale images using quadrant based spatially adaptive fuzzy filter” – Published in 2020, with 36 citations

  • “Hybrid approach for facial expression recognition using convolutional neural networks and SVM” – Published in 2022, with 35 citations

  • “Robust and fragile watermarking for medical images using redundant residue number system and chaos” – Published in 2020, with 19 citations

Conclusion:

Dr. Muhammad Tahir Naseem stands out as a dedicated researcher and academic who brings together theory, application, and innovation in his work. His expertise in AI, signal processing, and diagnostic imaging is evident through his scholarly outputs and collaborative achievements. Through impactful research, peer-reviewed publications, and active participation in international academic platforms, he has contributed meaningfully to both scientific advancement and community benefit. Dr. Muhammad Tahir Naseem’s work continues to push boundaries in intelligent healthcare systems and secure information processing, making him a highly deserving candidate for nomination and recognition in the academic award landscape.

 

 

Muhammad Bilal | Civil Engineering | Best Researcher Award

Dr. Muhammad Bilal | Civil Engineering | Best Researcher Award

Dr. Muhammad Bilal | Civil Engineering – Doctoral Student at Shanghai Jiao Tong University, China

Muhammad Bilal is a driven doctoral researcher in Civil Engineering at Shanghai Jiao Tong University, China. With a multidisciplinary background and strong academic foundations, he has dedicated his academic career to advancing geotechnical engineering and natural hazard risk reduction, particularly focusing on slope stability and landslide hazard assessment. Known for his hands-on problem-solving abilities and commitment to sustainable infrastructure, Bilal brings together technical excellence and global collaboration. He has actively contributed to the academic community through impactful research, international publications, and participation in advanced research projects across Asia. His passion for research, strong theoretical knowledge, and applied engineering skills position him as an emerging voice in geotechnical and environmental engineering research.

Academic Profile:

Scopus

Education

Bilal’s academic journey began with a Bachelor’s degree in Civil Engineering from the University of Engineering and Technology (UET), Taxila. His undergraduate research on subgrade soil modeling led to his first research publication and sparked his interest in experimental geotechnics. He went on to complete his Master’s degree in Civil Engineering from Harbin Institute of Technology in 2024, where he worked on the slope stability analysis under freeze-thaw cycles. Currently, he is pursuing his Ph.D. at Shanghai Jiao Tong University, one of China’s top-tier research institutions. His doctoral research focuses on rainfall-induced landslide hazard assessment using advanced numerical methods like SPH and LPF3D simulation software, with a particular emphasis on multi-landslide chain reactions and vegetation-based mitigation approaches.

Experience

Bilal has been deeply involved in both academic and applied engineering environments throughout his academic career. He has participated in several national and international research projects dealing with soil behavior, landslide prediction, and geotechnical risk assessment. His practical experience includes working on geotechnical modeling, statistical prediction of subgrade strength, and dynamic hazard assessment. His leadership skills were demonstrated early when he led his undergraduate team on a final-year research project that earned a publication at an international sustainability conference. He is also proficient in using tools such as Abaqus, SPSS, AutoCAD, LPF3D, and Rhinoceros, giving him a solid foundation in both analytical modeling and digital design. His contributions have extended beyond academia to practical geotechnical problem-solving with real-world applications.

Research Interests

Bilal’s primary research interests lie in geotechnical engineering, particularly in slope stability, landslide mechanics, soil-structure interaction, and the use of numerical simulations in hazard mitigation. He has a strong focus on rainfall-induced landslides, freeze-thaw soil behavior, and predictive modeling of soil mechanics. His work often integrates advanced simulations with real-case data, offering insights into complex hazard mechanisms and their mitigation. Additionally, he explores the environmental role of vegetation in controlling debris flow and landslide spread in mountainous terrains. His interdisciplinary interest also extends to the use of nanomaterials in civil engineering applications and the advancement of sustainable geotechnical practices.

Awards and Honors

Bilal is a recipient of the prestigious Chinese Government CSC Scholarship, awarded for his outstanding academic performance and research potential. He has earned a Certificate of Continuing Professional Development from the Pakistan Engineering Council and has completed an international course in Construction Project Management. His earlier academic milestones include winning multiple scholarships, participating in national competitions, and achieving certifications in Microsoft Office and technical surveying. These awards reflect his consistent commitment to academic growth, professional development, and lifelong learning.

Selected Publications 📚

  1. 📘 “Failure process analysis of a catastrophic landslide in Zhenxiong…” – Engineering Geology, 2025, cited by 9 articles
  2. 🧱 “Prediction of Resilient Modulus of Subgrade Loamy Soils…” – IJ Engineering Works, 2024, cited by 6 articles
  3. 📗 “Application of nanomaterials on the performance of asphalt binders…” – Journal of Road Engineering, 2025, cited by 4 articles
  4. 🌧️ “Dynamic analysis of rainfall-induced landslides…” – Bulletin of Engineering Geology (Under Review)
  5. 📝 “Regression Model for Predicting Soaked CBR from UCC” – Sustainable Structures and Materials, 2023, cited by 5 articles
  6. 🌍 “Track Geometry Indices Case Study: Beijing-Guangzhou Railway” – Transportation Research Records, 2025, cited by 3 articles
  7. 🏗️ “Empirical Correlation Between Index and Strength Properties” – 3rd CSCE Conference, 2021, cited by 2 articles

Conclusion

Muhammad Bilal is a promising researcher whose contributions to civil and geotechnical engineering are well-aligned with the goals of the “Best Researcher Award” category. His academic rigor, strong publication record, and global academic engagements reflect his potential to drive innovation and research impact in the field. He has demonstrated exceptional ability in integrating theoretical models with real-world engineering problems, especially in natural hazard mitigation. Bilal continues to show outstanding promise as a future academic leader, and his ongoing Ph.D. research is expected to contribute significantly to the body of knowledge in landslide risk management. His passion for sustainable engineering solutions and cross-cultural collaborations make him a well-rounded and deserving nominee for this award.

 

 

Seyedrasoul Nabavian | Civil | Best Researcher Award

Assist. Prof. Dr. Seyedrasoul Nabavian | Civil | Best Researcher Award

Assist. Prof. Dr. Seyedrasoul Nabavian | Civil – Ayatollah Boroujeri University, Iran

Dr. Seyedrasoul Nabavian is an emerging scholar in the field of civil engineering with a developing academic track record in structural health monitoring and fracture mechanics. Currently serving as an Assistant Professor of Civil Engineering at Ayatollah Boroujerdi University, he has demonstrated a strong commitment to advancing knowledge in structural dynamics, particularly through innovative output-only modal identification techniques and sustainable material research. His contributions, though modest in scale at this stage of his career, display focused rigor, collaboration, and technical depth, positioning him as a researcher with high potential in both academic and applied engineering domains.

Profile Verified:

Google Scholar

Education:

Dr. Nabavian received his academic training in civil and structural engineering, with advanced studies focusing on structural mechanics, space structures, and material behavior under dynamic and environmental stressors. Through his postgraduate education, he developed a foundational interest in experimental and analytical methods for diagnosing structural performance, leading to his ongoing work in monitoring systems and advanced concrete technologies.

Experience:

Professionally, Dr. Nabavian has worked in both academic and collaborative research environments, partnering with national and international researchers to contribute to ongoing challenges in structural reliability and monitoring. His academic appointments have enabled him to teach courses in structural engineering, supervise students, and contribute to institutional research projects. Moreover, his participation in interdisciplinary teams involving experimental mechanics and computational analysis has strengthened his methodological base and research versatility.

Research Interests:

His research interests are concentrated in structural identification and monitoring, fracture mechanics, and sustainable construction materials. Specifically, he investigates output-only techniques for modal identification, noise effects on signal processing in structures, and fracture behavior in recycled aggregate concrete enhanced with nanomaterials or subjected to extreme conditions. These interests reflect a critical alignment with global trends toward smart infrastructure, resilient design, and environmental sustainability in civil engineering.

Awards:

While specific awards or honors are not listed in the current data, Dr. Nabavian’s collaborative research output and publication record in indexed journals demonstrate recognition within the academic community. His work has been cited across a range of publications, and he has contributed to the growing body of knowledge in non-invasive structural monitoring and advanced material modeling. As he continues to build his citation metrics and publication footprint, he is well-positioned to be recognized through future awards focused on early-career researchers or interdisciplinary contributions.

Publications:

📌 “Determining minimum number of required accelerometers for output-only structural identification of frames”
arXiv, 2020 – Cited by 4
A foundational study proposing optimal sensor placement strategies for structural monitoring.
🔍 “Effect of noise on output-only modal identification of beams”
arXiv, 2020 – Cited by 3
Explores how noise affects the accuracy of modal properties in beams.
🧪 “Output-only modal analysis of a beam via frequency domain decomposition method using noisy data”
International Journal of Engineering, 2019 – Cited by 3
Improves reliability in modal analysis using frequency-based techniques with noisy datasets.
♻️ “Fracture characteristics of recycled aggregate concrete using work-of-fracture and size effect methods: the effect of water to cement ratio”
Archives of Civil and Mechanical Engineering, 2023 – Cited by 3
Focuses on sustainable construction through recycled materials and mechanical modeling.
🌱 “Influence of nano‐silica particles on fracture features of recycled aggregate concrete using boundary effect method”
Structural Concrete, 2024 – Cited by 1
Investigates how nano-silica improves recycled concrete using experimental fracture testing.
🎯 “Damping estimation of a double-layer grid by output-only modal identification”
Scientia Iranica, 2021 – Cited by 1
Analyzes structural damping through output-only techniques applied to spatial grids.
🏗️ “Output-only Structural Identification of a Double-layer Grid with Ball Joint System”
Modares Civil Engineering Journal, 2026 – Not yet cited
Recent publication addressing modal identification in jointed structural frameworks.

Conclusion:

In conclusion, Dr. Seyedrasoul Nabavian represents a promising academic with solid technical grounding and a growing portfolio of peer-reviewed research. His contributions, although currently at an early career stage in terms of citations and publication scale, are impactful in terms of methodology and societal relevance. His dedication to structural monitoring, sustainability, and experimental mechanics underscores a thoughtful research agenda that addresses both immediate engineering challenges and long-term infrastructure needs. With continued support and recognition, he is expected to expand his research reach and strengthen his role in the international civil engineering research community.

 

 

 

Yuanyuan Xu | Engineering | Best Researcher Award

Prof. Yuanyuan Xu | Engineering | Best Researcher Award

Prof. Yuanyuan Xu | Engineering – Guangdong Ocean University, China

Professor Xu Yuanyuan is an accomplished Chinese electrical engineering scholar, currently serving at Guangdong Ocean University. Born in July 1988 in Suixian, Henan Province, she has cultivated a strong academic and professional career focused on superconducting motor technologies, offshore wind energy systems, and ship propulsion innovations. With deep roots in both theoretical research and practical application, she has become a rising figure in the marine electrical systems and renewable energy community. Her interdisciplinary contributions and leadership in several national and provincial research projects affirm her as a deserving candidate for the Best Researcher Award.

Profile Verified:

ORCID

Education:

Professor Xu’s academic journey demonstrates a global and interdisciplinary outlook. She earned her undergraduate degree in Automation from Henan University of Science and Technology in 2010. Pursuing further expertise, she enrolled in a joint Master’s and Doctoral program at Southwest Jiaotong University in Vehicle Operation Engineering, graduating in 2015. During the same period, she earned a PhD in Electronics and Electrical Engineering from Tokyo University of Marine Science and Technology under the supervision of Professor Izumi Mitsuru. This dual academic training provided her with a robust foundation in motor design, marine propulsion systems, and advanced superconductivity applications.

Experience:

Xu Yuanyuan began her postdoctoral and early faculty career at Guangdong Ocean University in 2015. Rapidly progressing through the academic ranks, she was appointed Associate Professor in 2017 and promoted to full Professor in 2024. Her long-standing research focus has included motor parameter optimization, energy-efficient marine electrical systems, and fault diagnosis for hybrid ship propulsion. She has also actively mentored student innovation projects and contributed to several national-level research initiatives, reflecting her deep commitment to academic excellence and applied engineering development.

Research Interests:

Professor Xu’s research interests span several forward-looking areas of marine engineering and applied superconductivity. Her core focus lies in:

  • Ship control system monitoring and performance optimization

  • Motor design and optimization for marine applications

  • Control strategies for ship hybrid electric propulsion systems

  • Intelligent control of ship operations

Her interdisciplinary research merges computational modeling, system simulations, and experimental validations—enabling her to advance the practical performance of next-generation ship propulsion technologies.

Awards:

Professor Xu has been honored with several prestigious accolades recognizing her academic and pedagogical contributions. Notably, she received the China Navigation Society Young Talents Support Engineering Talents Award (2022) and the Teaching Master Award from Guangdong Ocean University (2023). She also received the Excellence in Teaching Quality Award during the COVID-19 pandemic and was recognized for her online hybrid teaching module “Basics of Marine Automation” (2020). Additionally, she received guidance awards for undergraduate thesis excellence and was instrumental in securing a Bronze Award at the 8th China International Internet+ Competition in 2022.

Publications:

  1. 🛳️ A Saturation Adaptive Nonlinear Integral Sliding Mode Controller for Ship Permanent Magnet Propulsion Motors, Journal of Marine Science and Engineering, 2025 – Cited by 6.
  2. ⚙️ Non-Singular Fast Terminal Composite Sliding Mode Control of Marine Permanent Magnet Synchronous Propulsion Motors, Machines, 2025 – Cited by 5.
  3. 🌪️ Characteristic Research and Structural Optimization of Coreless Superconducting Linear Traction Motor, Micromotors, 2024 – Cited by 7.
  4. 🌀 Multi-objective Optimization of Superconducting Linear Motor Considering Racetrack Coils, IEEE TASC, 2024 – Cited by 9.
  5. 🌊 Optimization Study of the Main Parameters of Wind Turbine Generators, Superconductor Science and Technology, 2022 – Cited by 11.
  6. ⚡ Study on Electrical Design of Large-Capacity Fully Superconducting Offshore Wind Turbine Generators, IEEE TASC, 2021 – Cited by 15.
  7. 🌍 Electrical Design and Structure Optimization of 10 MW Superconducting Wind Turbine Generators, Physica C, 2020 – Cited by 17.

Conclusion:

Professor Xu Yuanyuan stands at the forefront of research in marine propulsion, wind energy systems, and superconducting motor technologies. Through her strategic leadership in multi-institutional projects, mentorship of emerging researchers, and commitment to academic excellence, she has significantly advanced the frontiers of electrical engineering in marine contexts. Her globally recognized research, practical innovations, and dedication to student success render her an outstanding candidate for the Best Researcher Award. Her work not only contributes to scholarly literature but also drives forward the transition toward intelligent and sustainable marine energy systems.

 

 

 

Dr. Wang Jia | Engineering | Women Researcher Award

Dr. Wang Jia | Engineering | Women Researcher Award

Dr. Wang Jia | Engineering – Student at Shanghai Jiao Tong University, China

Wang Jia is an emerging scholar in the field of computational fluid dynamics and artificial intelligence, currently pursuing her Ph.D. in Transportation Engineering. Her work integrates cutting-edge deep reinforcement learning (DRL) algorithms with high-fidelity numerical simulation tools to enhance active flow control strategies. With a multidisciplinary foundation in hydraulic engineering, computer science, and high-performance computing, she is known for her innovative contributions in simulating and optimizing fluid behavior around complex geometries. Her growing body of peer-reviewed publications, conference presentations, and research achievements places her at the forefront of next-generation AI-driven engineering solutions.

Profile Verified:

ORCID | Google Scholar

Education:

Wang Jia’s academic journey reflects a track record of excellence across all levels. She completed her undergraduate studies in Hydraulic Engineering, graduating at the top of her class. She continued her academic progression with a Master’s degree in Hydraulic Engineering, where she maintained a high GPA and was recommended directly for Ph.D. studies. Currently, she is a Ph.D. candidate at Shanghai Jiao Tong University, one of China’s most prestigious institutions. She has received national-level scholarships at each stage of her academic life, consistently ranking in the top 1% of her cohorts.

Experience:

Wang Jia has built substantial experience in simulation-driven research, combining physics-based models with data-driven intelligence. She has contributed to national and interdisciplinary projects, including experimental hydraulic studies of spillway systems, AI-enhanced shipbuilding construction, and energy-efficient ship dynamics. She developed and implemented DRL algorithms (DDPG, PPO, SAC) to optimize synthetic jet actuation, and she has successfully coupled these models with CFD solvers like OpenFOAM and ANSYS Fluent. Her work extends to high-performance computing, where she has significantly improved parallel simulation efficiency—an essential factor for real-time engineering solutions.

Research Interests:

Her primary research interests include deep reinforcement learning for flow control, high-performance computing in fluid dynamics, and intelligent systems for energy-efficient engineering. She is especially focused on the control of turbulent and unsteady flows around bluff bodies, using AI algorithms to mimic adaptive, biologically inspired responses. Her work stands at the confluence of artificial intelligence, fluid mechanics, and computational engineering, aiming to contribute scalable, intelligent control systems for marine and aerospace applications.

Awards:

Throughout her academic career, Wang Jia has consistently earned prestigious scholarships and honors that recognize both academic excellence and research potential. She received the National Scholarship at the undergraduate, master’s, and doctoral levels—a rare feat. She was also awarded an “Outstanding Oral Presentation” at a national Ph.D. forum and was selected to present at high-profile academic conferences such as ASME’s International Offshore Engineering event. These honors affirm both the quality of her research and her ability to communicate it effectively within the scientific community.

Selected Publications 📚:

  • 🌀 Robust and Adaptive Deep Reinforcement Learning for Enhancing Flow Control around a Square Cylinder, Physics of Fluids, 2024 — Cited by: 11
  • 🧠 Deep Reinforcement Learning-Based Active Flow Control of an Elliptical Cylinder, Physics of Fluids, 2024 — Cited by: 8
  • 🚀 Optimal Parallelization Strategies for Active Flow Control in DRL-Based CFD, Physics of Fluids (Featured Article), 2024 — Cited by: 8
  • 💨 Effect of Synthetic Jets Actuator Parameters on DRL-Based Flow Control, Physics of Fluids (Special Topic), 2024 — Cited by: 6
  • 🌊 Fluctuating Characteristics of the Stilling Basin with a Negative Step, Water, 2021 — Cited by: 5
  • ⏱ Time-Frequency Characteristics of Fluctuating Pressure Using HHT, Mathematical Problems in Engineering, 2021 — Cited by: 1
  • ⚡ Strategies for Energy-Efficient Flow Control Leveraging DRL, Engineering Applications of Artificial Intelligence, 2025 — Published, citations pending

Conclusion:

Wang Jia represents a new generation of researchers equipped with the computational tools, engineering insight, and intellectual rigor to solve complex problems at the intersection of AI and fluid dynamics. Her rapid progression through academic ranks, influential publications, and contributions to intelligent flow control technology demonstrate not only technical skill but also forward-thinking vision. She is especially deserving of recognition through the Women Researcher Award for her excellence in STEM, commitment to innovation, and strong potential for future impact in science and engineering.

 

 

 

Mr. Zeshan Ali | Engineering | Young Researcher Award

Mr. Zeshan Ali | Engineering | Young Researcher Award

Mr. Zeshan Ali | Engineering – Senior Researcher at International Water Management Institute, Pakistan


Zeshan Ali is a dynamic and skilled hydrologist and research officer with a robust academic and professional foundation in Water Resource Engineering and Agricultural Engineering. With diverse expertise ranging from hydrological modeling to remote sensing, his work addresses critical issues such as climate resilience, sustainable agriculture, and data-driven water management in South Asia. Currently serving as a Senior Research Officer at the International Water Management Institute (IWMI) in Pakistan, Zeshan is making impactful contributions to global initiatives like NEXUS Gains and Fragility, Conflict, and Migration by integrating scientific research with real-world water governance solutions. His blend of field-based experience, technical proficiency, and scholarly output has positioned him as an emerging expert in the fields of climate modeling and hydrology.

Profile Verified:

Orcid | Scopus

Education:

Zeshan earned his Master of Science in Water Resources Engineering from the University of Engineering and Technology, Lahore, in 2022, where he specialized in hydrological modeling under climate change scenarios. He previously obtained his Bachelor of Science in Agricultural Engineering from PMAS Arid Agriculture University, Rawalpindi, in 2018. His academic background combines theoretical depth with practical understanding, particularly in the applications of GIS, remote sensing, and statistical hydrology.

Experience:

Professionally, Zeshan Ali has steadily advanced through roles that span research, engineering design, and operational management. At IWMI, he has led efforts in installing and monitoring advanced field instruments such as Eddy Covariance Flux Towers and CTD divers, managing groundwater and carbon flux data for regional planning. He has also contributed to stakeholder training, climate impact assessments, and data analysis under projects funded by CGIAR and the World Bank. Prior to this, he worked as Assistant Hydraulic Design Engineer at MM Pakistan, focusing on hydropower and water conveyance infrastructure for the Kurram Tangi Dam. Earlier roles included research and field engineering with a focus on high-efficiency irrigation systems under the Punjab Irrigated-Agriculture Productivity Improvement Project (PIPIP), where he implemented sustainable water-saving techniques and solar energy integration for rural agricultural settings.

Research Interest:

Zeshan’s research interests lie at the intersection of water resources, climate science, and technology. His core expertise includes hydrological and hydraulic modeling, climate projections (CMIP6), flood prediction, sustainable agriculture, GIS, and AI-based data analysis. He is especially passionate about integrating climate modeling with watershed and river basin hydrology to support climate-resilient infrastructure and policies. His growing interest in machine learning and remote sensing highlights a modern, adaptive approach to traditional water resource challenges.

Awards and Recognition:

Zeshan has consistently been selected for specialized workshops, high-level consultative forums, and technical training programs across Pakistan and internationally. These include the IWMI Science Strategy Forum in Colombo, Sri Lanka, and multiple CGIAR-led workshops on groundwater management and integrated water resource strategies. His ability to organize, lead, and train at multi-stakeholder events reflects recognition of his scientific communication skills and technical competence.

Selected Publications 📚:

  1. 🌊 Z. Ali et al. (2023). “Hydrological Response Under CMIP6 Climate Projection in Astore River Basin, Pakistan,” Journal of Mountain Science, Springer. [Cited by: 9]
  2. 🌱 MU Masood, Z. Ali et al. (2023). “Appraisal of Landcover and Climate Change Impact on Water Resources,” Journal of Water, MDPI. [Cited by: 5]
  3. 🔮 Z. Ali et al. (2022). “Future Streamflow Prediction Using UBC Watershed Model,” 2nd Int. Conf. on Hydrology and Water Resources. [Cited by: 2]
  4. ❄️ I.U. Khan, Z. Ali et al. (2023). “Evaluation and Mapping of Snow Characteristics in Astore Basin,” Atmosphere, MDPI. [Cited by: 4]
  5. 🌨️ I. Khan, Z. Ali et al. (2022). “Evaluation of Snow Characteristics in Astore Basin,” Conf. on Sustainable Water Resources Management.
  6. 🏞️ M. Sharjeel, Z. Ali et al. (2022). “Impacts of Climate and Land Use Changes at Rawal Dam,” SWRM 2022.
  7. 🔍 M. Rashid, Z. Ali et al. (In Prep). “Robustness of Hydrological Models & ML Techniques for Extreme Events.”

Conclusion:

Zeshan Ali’s career is a testament to applied hydrological science’s critical role in climate adaptation and sustainable resource management. His contributions span the design of innovative monitoring systems, predictive hydrological models, and field training programs that empower communities and policymakers alike. Through a blend of research, engineering, and community engagement, Zeshan has emerged as a leader in water-related climate resilience. As he continues to advance both academic and field-based frontiers, his work holds promise for shaping sustainable futures across vulnerable ecosystems and transboundary water systems. His dedication, expertise, and passion make him an exemplary nominee for any recognition in the environmental and water sciences domain.

 

 

Dr. Xin Zhou | Engineering | Best Researcher Award

Dr. Xin Zhou | Engineering | Best Researcher Award

Dr. Xin Zhou | Engineering – Lecture at Shanghai University of Electric Power, China

Dr. Xin Zhou is a passionate and emerging researcher in the field of automation engineering, currently serving as a lecturer at Shanghai University of Electric Power. With a solid international educational background and hands-on research in robotics and intelligent optimization, he brings both academic insight and practical relevance to his work. Dr. Zhou has focused his career on robotic path planning, artificial intelligence in manufacturing, and intelligent control systems. His rapid contributions to both the theoretical foundations and industrial applications of intelligent robotics make him a promising candidate for the Best Researcher Award.

Education:

Dr. Zhou’s academic path spans several prestigious institutions across China, the UK, and Australia. He received his Ph.D. in Control Science and Engineering from East China University of Science and Technology in 2022, concentrating on intelligent algorithms and robotic optimization. He earned his Master’s degree in Digital Systems and Communication Engineering from the Australian National University (2016–2017), developing skills in communication and embedded systems. His undergraduate training was jointly conducted at the University of Liverpool and Xi’an Jiaotong-Liverpool University (2011–2015), where he majored in Electrical Engineering and Automation, providing a strong technical foundation for his current work.

Profile:

Orcid

Experience:

Since August 2022, Dr. Zhou has been working as a lecturer at the School of Automation Engineering, Shanghai University of Electric Power. In this position, he teaches undergraduate and graduate courses while engaging in active research. He has participated in two completed projects funded by the National Natural Science Foundation of China (NSFC), focusing on welding robotics and production scheduling under uncertainty. Dr. Zhou is also leading a current industry-funded research project on motion planning algorithms for robotic systems used in complex maintenance tasks. His combination of academic research and industrial cooperation demonstrates a comprehensive and practical research profile.

Research Interest:

Dr. Zhou’s primary research interests include robotic path planning, multi-objective optimization, intelligent algorithms, and smart manufacturing systems. He specializes in developing evolutionary algorithms and applying them to real-world robotic control challenges, especially in arc welding scenarios. His work aims to enhance the intelligence, flexibility, and adaptability of autonomous robotic systems, contributing to Industry 4.0 initiatives. He is particularly known for his work on decomposition-based optimization methods and real-time obstacle avoidance strategies.

Awards:

While Dr. Zhou is still early in his career, he has already made notable contributions to applied innovation, as evidenced by three Chinese patents in the area of robotic path planning. These patents include novel systems and methods for arc welding robot navigation and gantry-type robotic control, with the most recent filed in December 2023. His work in patented technologies reflects his practical approach to academic research and commitment to industry-aligned solutions.

Publications:

Dr. Zhou has authored and co-authored several influential journal papers. Below are seven key publications, with emojis, journal names, publication years, and citation notes:

📘 A decomposition-based multiobjective evolutionary algorithm with weight vector adaptation – Swarm and Evolutionary Computation, 2021. Cited for its novel adaptive mechanism in multi-objective optimization.

🤖 An approach for solving the three-objective arc welding robot path planning problem – Engineering Optimization, 2023. Frequently referenced in robotics and optimization studies.

🛠️ Online obstacle avoidance path planning and application for arc welding robot – Robotics and Computer-Integrated Manufacturing, 2022. Cited in real-time control literature.

🔍 A Collision-free path planning approach based on rule-guided lazy-PRM with repulsion field for gantry welding robots – Robotics and Autonomous Systems, 2024. Recent paper gaining citations in dynamic path planning.

📚 A survey of welding robot intelligent path optimization – Journal of Manufacturing Processes, 2021. Serves as a key reference for scholars in the welding robotics field.

🧠 Rule-based adaptive optimization strategies in robotic welding systems – Under review, targeted at IEEE Transactions on Industrial Informatics.

🔄 Multi-objective task sequencing and trajectory planning under dynamic constraints – Manuscript in progress for Journal of Intelligent Manufacturing.

Conclusion:

Dr. Xin Zhou is a standout young researcher whose work in robotic path planning and intelligent optimization has already made a significant impact in the field of automation. His research integrates high-level algorithm development with real-world engineering applications, making his contributions both academically valuable and practically useful. With a growing body of well-cited publications, involvement in both national and industry-sponsored projects, and active innovation through patents, Dr. Zhou is a strong candidate for the Best Researcher Award. His trajectory reflects both dedication and innovation, and he continues to show strong potential to lead transformative work in intelligent automation in the years ahead.

 

 

 

Prof. Dr. Sudip Basack | Civil Engineering | Distinguished Scientist Award

Prof. Dr. Sudip Basack | Civil Engineering | Distinguished Scientist Award 

Prof. Dr. Sudip Basack, Regent Education and Research Foundation, India

Dr. Sudip Basack is a seasoned academician and civil engineer with over 21 years of extensive teaching, research, and administrative experience in India and abroad. He holds a Ph.D. in Geotechnical Engineering from Jadavpur University, India, and has served in key academic roles including Professor, Principal, and Head of Department at various reputed institutions. Dr. Basack has worked internationally as a Research Academic and Postdoctoral Fellow in Australia, specializing in ground improvement and railway geomechanics. His research interests span geotechnical engineering, water resources, and groundwater hydrology, with numerous publications in peer-reviewed international journals and conferences. A Chartered Engineer and Fellow of several professional bodies, Dr. Basack is known for his dedication to academic excellence, leadership in R&D projects, supervision of postgraduate and doctoral scholars, and commitment to advancing civil engineering education and practice globally. He is currently serving as an Adjunct Professor at the Department of Civil Engineering, Graphic Era Deemed to be University, Dehradun, India.

Professional Profile:

GOOGLE SCHOLAR

ORCID

SCOPUS

Summary of Suitability for Distinguished Scientist Award

Dr. Sudip Basack is highly suitable for the  Distinguished Scientist Award owing to his distinguished academic and research career spanning over 21 years, including international experience in Australia. His impactful contributions to geotechnical engineering—reflected through high-quality publications in top-tier journals, funded research projects, and PhD supervision—demonstrate his leadership in research innovation. Dr. Basack’s work on stone column-reinforced soft soils and pile foundations has gained significant citations and recognition globally. His consistent pursuit of excellence and dedication to advancing civil engineering research make him a strong and deserving candidate for this prestigious

🎓 Educational Background

  • 📅 2000Ph.D. in Engineering (Geotechnical Engineering)
    Jadavpur University, Kolkata, India

  • 📅 1996Master of Civil Engineering (1st Class, Geotechnical Engineering)
    Jadavpur University, Kolkata, India

  • 📅 1994Bachelor of Engineering (1st Class, Civil Engineering)
    Bengal Engineering College (now IIEST Shibpur), University of Calcutta, India

💼 Professional Work Experience

👨‍🏫 Academic Positions – 21+ Years

  • 📍 Adjunct Professor, Graphic Era University, Dehradun
    (Feb 2024 – Present)
    🧪 Teaching & research in Geotechnical & Civil Engineering

  • 🎓 Principal, Elitte College of Engineering, Kolkata
    (Sept 2019 – Jan 2024)
    🏫 College administration and teaching

  • 🏗️ Professor & Head, Dept. of Civil Engineering, Kaziranga University, Assam
    (Jan 2018 – Jan 2019)

  • 🇦🇺 ARC Level-A Research Academic, University of Wollongong, Australia
    (Mar 2014 – Mar 2017)
    Ground improvement, railway geomechanics

  • 🇦🇺 Endeavour Postdoctoral Fellow, Australian Govt. – UOW
    (May 2010 – Nov 2010)

  • 🇦🇺 Visiting Fellow, University of Technology Sydney
    (Nov 2010 – Dec 2010)

  • 🏫 Faculty Member, Bengal Engineering & Science University (Now IIEST Shibpur)
    (2002 – 2014)
    Roles: Lecturer → Assistant Professor → Associate Professor

  • 🏫 Lecturer, ICV Polytechnic, Jhargram
    (Feb 2001 – Aug 2002)

🏗️ Industry Experience – 0.75 Years

  • 👷‍♂️ Project Engineer, Tara International, Kolkata
    (Oct 1999 – Mar 2000)

  • 🏗️ Trainee Structural Engineer, Sristi Consultants, Kolkata
    (Nov 2000 – Feb 2001)

🏆 Achievements & Contributions

  • 📚 Authored high-quality papers in peer-reviewed international journals & conferences

  • 🎓 Supervised numerous M.Tech and Ph.D. students successfully

  • 💼 Completed several Govt.-sponsored R&D projects and industrial consultancy works

  • 🎙️ Delivered invited lectures/seminars at national and international forums

  • 🧪 Engaged in cutting-edge research on:

    • Ground improvement techniques

    • Railway geomechanics

    • Pile-soil interaction

    • Geoenvironmental engineering

🥇 Awards & Honors

  • 🏅 Endeavour Postdoctoral Research Fellowship by the Australian Government

  • 🏅 Multiple national and international recognitions for academic and research excellence

  • 🌍 Recognition across the International Engineering Fraternity

  • 👨‍🏫 Consistent positive feedback from students for teaching effectiveness

Publication Top Notes:

Numerical solution of stone column–improved soft soil considering arching, clogging, and smear effects

CITED:164

Modeling the stone column behavior in soft ground with special emphasis on lateral deformation

CITED:84

Engineering properties of marine clays from the eastern coast of India

CITED:80

Modeling the performance of stone column–reinforced soft ground under static and cyclic loads

CITED:77

Measured and predicted response of pile groups in soft clay subjected to cyclic lateral loading

CITED:66

 

Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering – Civil Engineering at Western Sydney University, Australia

Kazem Javan is an accomplished researcher and PhD student in Civil and Environmental Engineering at Western Sydney University. He is passionate about advancing sustainable infrastructure solutions through innovative engineering approaches that address environmental challenges. His research focuses on developing durable, acid-resistant materials for sewer pipe rehabilitation, emphasizing the use of sustainable, recycled materials to reduce CO₂ emissions. Kazem is also involved in cutting-edge projects related to carbon-absorbing concrete, aiming to contribute to the circular economy. He brings a wealth of experience in environmental engineering, particularly in water management and resource efficiency, which he integrates into his academic work and professional practice.

Profile:

Google Scholar

Education:


Kazem Javan’s educational journey is rooted in Civil and Environmental Engineering. He is currently pursuing his PhD in Civil Engineering at Western Sydney University, with a focus on developing sustainable materials for infrastructure. Before this, Kazem completed a Master’s in Civil Engineering with a specialization in Water Engineering, where his research examined the impacts of climate change on water resources. His academic foundation began with a Bachelor’s in Civil Engineering, which provided him with a strong grasp of structural mechanics, geotechnical engineering, and transportation systems. This comprehensive academic background forms the foundation for his innovative work in sustainable engineering.

Experience:


Kazem Javan has significant experience in both the academic and professional domains of civil and environmental engineering. He currently works as an Environmental and Civil Engineering Manager, where he leads projects focusing on sustainable infrastructure development and low-emission technologies. In this role, he ensures compliance with environmental regulations and integrates renewable resource utilization in engineering practices. Previously, Kazem was a Technical Supervisor at Ideh Afroz Aria Company, where he supervised water infrastructure projects and integrated climate resilience strategies. His broad experience allows him to combine theoretical knowledge with practical solutions in real-world applications, enhancing both the sustainability and efficiency of civil engineering projects.

Research Interests:

Kazem’s research interests are centered around sustainable engineering solutions, focusing on the development of materials and systems that contribute to environmental preservation and climate change mitigation. His current research explores the use of recycled materials, such as broken glass and mine by-products, for sewer pipe rehabilitation and the creation of durable, acid-resistant coatings. Kazem is also dedicated to advancing carbon-absorbing concrete technologies and is actively involved in the CRC SmartCrete project, where he explores the potential of waste minerals to enhance sustainability in construction. His work in environmental engineering spans areas such as water resource management, renewable energy, waste management, and the water-energy-food nexus, all aimed at reducing environmental impact.

Awards:


Kazem Javan has been recognized for his exceptional academic and professional achievements. He was awarded the SmartCrete CRC and Western Sydney University Postgraduate Research Scholarship, which supports his ongoing research into sustainable infrastructure and material innovations. This award highlights Kazem’s commitment to advancing sustainability in the engineering field, particularly through the development of eco-friendly solutions that can have a lasting impact on construction practices and environmental protection. His ability to combine technical expertise with a strong focus on sustainability has earned him the recognition he deserves.

Publications:


Kazem has contributed significantly to the academic community, publishing several impactful papers in prestigious journals. His work addresses critical issues in water resource management, environmental sustainability, and the effects of climate change on infrastructure. Below are some of his notable publications:

  1. Javan, K., Banihashemi, S., Nazari, A., et al. (2025). Coupled SWMM-MOEA/D for Multi-Objective Optimization of Low Impact Development in Urban Stormwater Systems. Journal of Hydrology 🌍 (Cited by: 12)
  2. Javan, K., Darestani, M., Ibrar, I., et al. (2025). Interrelated Issues within the Water-Energy-Food Nexus with a Focus on Environmental Pollution for Sustainable Development: A Review. Environmental Pollution 🌱 (Cited by: 9)
  3. Javan, K., Altaee, A., BaniHashemi, S., et al. (2024). A Review of Interconnected Challenges in the Water–Energy–Food Nexus: Urban Pollution Perspective towards Sustainable Development. Science of the Total Environment 🏙️ (Cited by: 16)
  4. Javan, K., & Darestani, M. (2024). Assessing Environmental Sustainability of a Vital Crop in a Critical Region: Investigating Climate Change Impacts on Agriculture Using the SWAT Model and HWA Method. Heliyon 🌾 (Cited by: 5)
  5. Javan, K., Altaee, A., Darestani, M., et al. (2023). Assessing the Water–Energy–Food Nexus and Resource Sustainability in the Ardabil Plain: A System Dynamics and HWA Approach. Water 💧 (Cited by: 20)
  6. Javan, K., Mirabi, M., Hamidi, S. A., et al. (2023). Enhancing Environmental Sustainability in a Critical Region: Climate Change Impacts on Agriculture and Tourism. Civil Engineering Journal 🏗️ (Cited by: 3)
  7. Javan, K., Lialestani, M. R. F. H., Ashouri, H., & Moosavian, N. (2015). Assessment of the Impacts of Nonstationarity on Watershed Runoff Using Artificial Neural Networks: A Case Study in Ardebil, Iran. Modeling Earth Systems and Environment 🌍 (Cited by: 8)

Conclusion:


Kazem Javan is an outstanding candidate for the “Best Researcher Award,” thanks to his groundbreaking work in sustainable engineering, water management, and climate change mitigation. His dedication to creating environmentally friendly materials and improving construction practices positions him as a leader in his field. With a strong academic background, extensive professional experience, and a proven track record of impactful research, Kazem continues to make significant contributions to the engineering community. His work not only addresses pressing global environmental issues but also sets the stage for a more sustainable future in civil and environmental engineering. His commitment to integrating innovative solutions into practice makes him highly deserving of this prestigious recognition.

Naresh Kumar| Mechanical Engineering | Best Researcher Award

Mr.Naresh Kumar| Mechanical Engineering | Best Researcher Award

PhD (Engineering) Research Scholar |Amity University | India

Naresh Kumar is a dedicated and result-oriented professional with over 13 years of experience in teaching, research, and academic administration. He currently serves as an Assistant Professor and Maintenance Manager at Kasturi Shikshan Sanstha in Pune, Maharashtra. With expertise in areas such as Strength of Materials, Machine Design, CFD, and Engineering Mechanics, Naresh is passionate about enhancing educational practices. He has also contributed to the field of research, with numerous publications in prestigious journals. His skills in CAD/CAM, FEM, and ANSYS further complement his teaching. Naresh actively participates in various workshops, FDPs, and short-term courses to keep up with the latest developments in the mechanical engineering field. His goal is to continue fostering academic growth and contribute to the advancement of the engineering community.

 

Profile

Orcid

Scopus

Education

Naresh Kumar’s educational journey began with his matriculation from S.B.S.N. Bhiwani, Haryana, where he achieved 58.5% in 2002, followed by a senior secondary education from S.K.G.S.S. Bhiwani, Haryana with 57.2% in 2005. He earned his Bachelor’s degree in Mechanical Engineering from B.I.T.S, Bhiwani, Haryana (MDU Rohtak) in 2009, securing a 75.32% score. Naresh continued his academic pursuit with an M.Tech. in Manufacturing and Automation from U.I.E.T. Rohtak (MDU Rohtak) in 2011, with 70.06%. He then completed his Ph.D. in Engineering from Amity University, Jaipur, Rajasthan, where he achieved a remarkable 95.70% in course work, graduating in 2022. His educational background equips him with a strong foundation in mechanical engineering principles, and his continuous drive for knowledge fuels his passion for teaching and research.

 

Experience

Naresh Kumar brings over 13 years of experience in teaching and research, with a primary focus on mechanical engineering. He has taught undergraduate and postgraduate students across various subjects such as Strength of Materials, Machine Design, CFD, and Dynamics of Machines. As an Assistant Professor cum Maintenance Manager at Kasturi Shikshan Sanstha, Pune, Naresh has played a key role in maintaining academic excellence and overseeing the mechanical workshop. His administrative experience also includes overseeing NAAC accreditation and contributing to the exam department. His involvement extends to conducting academic duties such as Centre Superintendent responsibilities. Naresh has been an active contributor to academic events, serving on the organizing committee of the National Conference RTME-2013. His academic and administrative work is complemented by his role as a member of editorial boards for internationally recognized journals. His vast experience is rooted in both practical applications and innovative research in mechanical engineering.

 

Research Interests

Naresh Kumar’s primary research focus lies in the field of advanced manufacturing processes, specifically in Friction Stir Welding (FSW) and its application to dissimilar materials like aluminium and copper alloys. His work investigates the thermal and mechanical properties of welded joints, emphasizing the role of additives in improving welding outcomes. Naresh has published extensively on the topic, with significant contributions to journals like the METSZET Journal and the Journal of Technology. He also explores the computational aspects of mechanical engineering, utilizing tools like ANSYS and CFD for simulating and optimizing engineering designs. His recent research delves into topics like the exergy analysis of combined cycle power plants and cryocoolers. Naresh’s research aims to bridge the gap between theoretical analysis and practical application, contributing to the advancement of manufacturing processes, thermal management, and material science. His work is recognized internationally, with a focus on improving efficiency and sustainability in engineering applications.

 

Awards

Naresh Kumar has earned various awards and honors throughout his academic and professional career. His research contributions have been widely recognized in the form of numerous journal publications, many of which are indexed in Scopus. In 2024, his paper on “Friction Stir Welding of Aluminium and Copper Alloys” was published in METSZET Journal, highlighting his expertise in welding technologies. He is a member of editorial boards for prestigious journals like IJRITCC and TIJER, where his work is acknowledged for its impact on the field. Naresh’s role in organizing national conferences like RTME-2013 further underscores his leadership and commitment to advancing engineering education. Additionally, he has earned multiple certificates for his participation in workshops and short-term courses, including those related to research, technical writing, and advanced mechanical systems. His achievements reflect a consistent dedication to excellence in both academia and research.

 

Publications

Analysis of reinforced friction stir welded joints of dissimilar Al and Cu-alloys by ANSYS software

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2025

Experimental optimization of the FSW parameters to weld the dissimilar Al- and Cu-alloys by using additives at their joints

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

Design and Heat Transfer Analysis of Reinforced Friction Stir Welded Joints using ANSYS Software

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

Experimental optimization of the FSW parameters to weld the dissimilar Materials by using additives at their joints

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

The Experimental Investigation on various additives used in Friction Stir Welded Joints of Aluminium and Copper Alloys

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

The friction stir welding of aluminium and copper alloys with use of various additives at the joints

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

Thermal Analysis of Friction Stir Welded Joints of Aluminum and Copper alloys

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2024

A Review on the Friction Stir Welding Processes used for joining the various dissimilar materials from the year 2017 to the year 2023

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2023

The copper alloys used in the friction stir welding processes: A review

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2022

Thermal Analysis of a Thermo-coustic Cryocooler

Authors: Dr. Naresh Kumar

Citations: 0

Year: 2014

 

Conclusion

Naresh Kumar’s extensive publication record, active participation in academic and administrative roles, and ongoing professional development make him a highly suitable candidate for the “Best Researcher Awards.” His contributions to the fields of friction stir welding and material science, along with his commitment to academic excellence, clearly demonstrate his value as a leading researcher.