Mohamed Samir Zayed | Engineering | Best Researcher Award

Ms. Mohamed Samir Zayed | Engineering | Best Researcher Award

Ms. Mohamed Samir Zayed | Engineering | Assistant Lecturer at Suez University | Egypt

Prof. Mohamed Samir Zayed is an emerging scholar and technical expert in Electrical Power and Machines, recognized for his strong academic foundation, professional dedication, and growing research contributions within the field of renewable energy systems and electrical grid technologies. Prof. Mohamed Samir Zayed completed his Bachelor’s Degree in Electrical Power and Machines at Suez University with an Excellent with Honors distinction, demonstrating early academic excellence supported by a top-grade graduation project focused on the design and implementation of an advanced alarm system. His professional experience includes serving as an Assistant Teacher in the Department of Electrical Power and Machines at Suez University, where he contributes to course delivery, laboratory instruction, student guidance, and departmental academic activities. Additionally, he serves as the Technical Manager of the Solar Energy Testing and Consulting Center (SETC) at Suez University, where he led the center to achieve EGAC accreditation, showcasing his capability in laboratory management, quality systems, and technical compliance with international standards. His research interests include power system protection, renewable energy integration, fault current limitation techniques, grid stability, and emerging smart-grid applications. His research skills extend to MATLAB modeling, simulation of electrical circuits, renewable system analysis, fault current limiters, multisim simulations, and advanced technical software used in industrial and academic applications. Prof. Mohamed Samir Zayed has also delivered certified training programs in ISO 17025, ISO 19011, statistical quality control, and safety precautions, strengthening his technical competency and contribution to professional development within the engineering community. His awards and honors include earning honors-level distinctions during his undergraduate studies and achieving accreditation success for the SETC, reflecting his leadership and technical excellence. In conclusion, Prof. Mohamed Samir Zayed stands out as a promising academic and technical professional whose contributions in teaching, research, laboratory leadership, and renewable energy applications continue to grow, positioning him as a valuable contributor to advancing modern electrical engineering solutions.

Profile: ORCID

Featured Publication

  1. Zayed, M. S. (2025). Development of a new solid state fault current limiter for effective fault current limitation in wind-integrated grids. Electronics.

 

Yuanyuan Xu | Engineering | Best Researcher Award

Prof. Yuanyuan Xu | Engineering | Best Researcher Award

Prof. Yuanyuan Xu | Engineering – Guangdong Ocean University, China

Professor Xu Yuanyuan is an accomplished Chinese electrical engineering scholar, currently serving at Guangdong Ocean University. Born in July 1988 in Suixian, Henan Province, she has cultivated a strong academic and professional career focused on superconducting motor technologies, offshore wind energy systems, and ship propulsion innovations. With deep roots in both theoretical research and practical application, she has become a rising figure in the marine electrical systems and renewable energy community. Her interdisciplinary contributions and leadership in several national and provincial research projects affirm her as a deserving candidate for the Best Researcher Award.

Profile Verified:

ORCID

Education:

Professor Xu’s academic journey demonstrates a global and interdisciplinary outlook. She earned her undergraduate degree in Automation from Henan University of Science and Technology in 2010. Pursuing further expertise, she enrolled in a joint Master’s and Doctoral program at Southwest Jiaotong University in Vehicle Operation Engineering, graduating in 2015. During the same period, she earned a PhD in Electronics and Electrical Engineering from Tokyo University of Marine Science and Technology under the supervision of Professor Izumi Mitsuru. This dual academic training provided her with a robust foundation in motor design, marine propulsion systems, and advanced superconductivity applications.

Experience:

Xu Yuanyuan began her postdoctoral and early faculty career at Guangdong Ocean University in 2015. Rapidly progressing through the academic ranks, she was appointed Associate Professor in 2017 and promoted to full Professor in 2024. Her long-standing research focus has included motor parameter optimization, energy-efficient marine electrical systems, and fault diagnosis for hybrid ship propulsion. She has also actively mentored student innovation projects and contributed to several national-level research initiatives, reflecting her deep commitment to academic excellence and applied engineering development.

Research Interests:

Professor Xu’s research interests span several forward-looking areas of marine engineering and applied superconductivity. Her core focus lies in:

  • Ship control system monitoring and performance optimization

  • Motor design and optimization for marine applications

  • Control strategies for ship hybrid electric propulsion systems

  • Intelligent control of ship operations

Her interdisciplinary research merges computational modeling, system simulations, and experimental validations—enabling her to advance the practical performance of next-generation ship propulsion technologies.

Awards:

Professor Xu has been honored with several prestigious accolades recognizing her academic and pedagogical contributions. Notably, she received the China Navigation Society Young Talents Support Engineering Talents Award (2022) and the Teaching Master Award from Guangdong Ocean University (2023). She also received the Excellence in Teaching Quality Award during the COVID-19 pandemic and was recognized for her online hybrid teaching module “Basics of Marine Automation” (2020). Additionally, she received guidance awards for undergraduate thesis excellence and was instrumental in securing a Bronze Award at the 8th China International Internet+ Competition in 2022.

Publications:

  1. 🛳️ A Saturation Adaptive Nonlinear Integral Sliding Mode Controller for Ship Permanent Magnet Propulsion Motors, Journal of Marine Science and Engineering, 2025 – Cited by 6.
  2. ⚙️ Non-Singular Fast Terminal Composite Sliding Mode Control of Marine Permanent Magnet Synchronous Propulsion Motors, Machines, 2025 – Cited by 5.
  3. 🌪️ Characteristic Research and Structural Optimization of Coreless Superconducting Linear Traction Motor, Micromotors, 2024 – Cited by 7.
  4. 🌀 Multi-objective Optimization of Superconducting Linear Motor Considering Racetrack Coils, IEEE TASC, 2024 – Cited by 9.
  5. 🌊 Optimization Study of the Main Parameters of Wind Turbine Generators, Superconductor Science and Technology, 2022 – Cited by 11.
  6. ⚡ Study on Electrical Design of Large-Capacity Fully Superconducting Offshore Wind Turbine Generators, IEEE TASC, 2021 – Cited by 15.
  7. 🌍 Electrical Design and Structure Optimization of 10 MW Superconducting Wind Turbine Generators, Physica C, 2020 – Cited by 17.

Conclusion:

Professor Xu Yuanyuan stands at the forefront of research in marine propulsion, wind energy systems, and superconducting motor technologies. Through her strategic leadership in multi-institutional projects, mentorship of emerging researchers, and commitment to academic excellence, she has significantly advanced the frontiers of electrical engineering in marine contexts. Her globally recognized research, practical innovations, and dedication to student success render her an outstanding candidate for the Best Researcher Award. Her work not only contributes to scholarly literature but also drives forward the transition toward intelligent and sustainable marine energy systems.

 

 

 

Dr. Wang Jia | Engineering | Women Researcher Award

Dr. Wang Jia | Engineering | Women Researcher Award

Dr. Wang Jia | Engineering – Student at Shanghai Jiao Tong University, China

Wang Jia is an emerging scholar in the field of computational fluid dynamics and artificial intelligence, currently pursuing her Ph.D. in Transportation Engineering. Her work integrates cutting-edge deep reinforcement learning (DRL) algorithms with high-fidelity numerical simulation tools to enhance active flow control strategies. With a multidisciplinary foundation in hydraulic engineering, computer science, and high-performance computing, she is known for her innovative contributions in simulating and optimizing fluid behavior around complex geometries. Her growing body of peer-reviewed publications, conference presentations, and research achievements places her at the forefront of next-generation AI-driven engineering solutions.

Profile Verified:

ORCID | Google Scholar

Education:

Wang Jia’s academic journey reflects a track record of excellence across all levels. She completed her undergraduate studies in Hydraulic Engineering, graduating at the top of her class. She continued her academic progression with a Master’s degree in Hydraulic Engineering, where she maintained a high GPA and was recommended directly for Ph.D. studies. Currently, she is a Ph.D. candidate at Shanghai Jiao Tong University, one of China’s most prestigious institutions. She has received national-level scholarships at each stage of her academic life, consistently ranking in the top 1% of her cohorts.

Experience:

Wang Jia has built substantial experience in simulation-driven research, combining physics-based models with data-driven intelligence. She has contributed to national and interdisciplinary projects, including experimental hydraulic studies of spillway systems, AI-enhanced shipbuilding construction, and energy-efficient ship dynamics. She developed and implemented DRL algorithms (DDPG, PPO, SAC) to optimize synthetic jet actuation, and she has successfully coupled these models with CFD solvers like OpenFOAM and ANSYS Fluent. Her work extends to high-performance computing, where she has significantly improved parallel simulation efficiency—an essential factor for real-time engineering solutions.

Research Interests:

Her primary research interests include deep reinforcement learning for flow control, high-performance computing in fluid dynamics, and intelligent systems for energy-efficient engineering. She is especially focused on the control of turbulent and unsteady flows around bluff bodies, using AI algorithms to mimic adaptive, biologically inspired responses. Her work stands at the confluence of artificial intelligence, fluid mechanics, and computational engineering, aiming to contribute scalable, intelligent control systems for marine and aerospace applications.

Awards:

Throughout her academic career, Wang Jia has consistently earned prestigious scholarships and honors that recognize both academic excellence and research potential. She received the National Scholarship at the undergraduate, master’s, and doctoral levels—a rare feat. She was also awarded an “Outstanding Oral Presentation” at a national Ph.D. forum and was selected to present at high-profile academic conferences such as ASME’s International Offshore Engineering event. These honors affirm both the quality of her research and her ability to communicate it effectively within the scientific community.

Selected Publications 📚:

  • 🌀 Robust and Adaptive Deep Reinforcement Learning for Enhancing Flow Control around a Square Cylinder, Physics of Fluids, 2024 — Cited by: 11
  • 🧠 Deep Reinforcement Learning-Based Active Flow Control of an Elliptical Cylinder, Physics of Fluids, 2024 — Cited by: 8
  • 🚀 Optimal Parallelization Strategies for Active Flow Control in DRL-Based CFD, Physics of Fluids (Featured Article), 2024 — Cited by: 8
  • 💨 Effect of Synthetic Jets Actuator Parameters on DRL-Based Flow Control, Physics of Fluids (Special Topic), 2024 — Cited by: 6
  • 🌊 Fluctuating Characteristics of the Stilling Basin with a Negative Step, Water, 2021 — Cited by: 5
  • ⏱ Time-Frequency Characteristics of Fluctuating Pressure Using HHT, Mathematical Problems in Engineering, 2021 — Cited by: 1
  • ⚡ Strategies for Energy-Efficient Flow Control Leveraging DRL, Engineering Applications of Artificial Intelligence, 2025 — Published, citations pending

Conclusion:

Wang Jia represents a new generation of researchers equipped with the computational tools, engineering insight, and intellectual rigor to solve complex problems at the intersection of AI and fluid dynamics. Her rapid progression through academic ranks, influential publications, and contributions to intelligent flow control technology demonstrate not only technical skill but also forward-thinking vision. She is especially deserving of recognition through the Women Researcher Award for her excellence in STEM, commitment to innovation, and strong potential for future impact in science and engineering.

 

 

 

Wang-Sang Lee | Engineering | Best Researcher Award

Prof. Dr. Wang-Sang Lee | Engineering | Best Researcher Award

Professor | Gyeongsang Nationa University | South Korea

Prof. Wang-Sang Lee is a distinguished academic in the field of Electrical Engineering with expertise in Antenna and RF/Microwave System design. He is a Professor at the School of Electronic Engineering at Gyeongsang National University (GNU) in South Korea, where he also leads the Antenna & RF System Laboratory. With an impressive academic background, including a Ph.D. from KAIST (Korea Advanced Institute of Science and Technology), Prof. Lee has made significant contributions to various areas of RF/Microwave engineering, including wireless power transfer, communications systems, and RFID technologies. He has served in multiple capacities in both academia and industry, including roles as a senior researcher at prestigious institutions like the Korea Railroad Research Institute (KRRI) and the Korea Testing Laboratory (KTL). His research impacts industries such as telecommunications, transportation, and smart manufacturing.

Profile

Scholar

Education

Prof. Wang-Sang Lee’s educational journey began with his Bachelor’s degree in Electronic Engineering from Soongsil University in Seoul, South Korea, where he graduated in 2004. He continued his studies at KAIST, where he completed his M.S. in Electrical Engineering in 2006. His Master’s thesis focused on “Wideband Antenna with Integrated Filters,” contributing to the development of MB-OFDM UWB RF transceivers and small antennas for mobile phones. Prof. Lee earned his Ph.D. from KAIST in 2013, under the guidance of Prof. Jong-Won Yu. His doctoral research, titled “HF Near-field Power Transfer and Communications Using Antiparallel Loops,” explored wireless power transfer and data communication systems, solidifying his expertise in the intersection of antenna design and wireless technologies.

Experience

Prof. Lee has built a diverse and robust career in both academic and industrial sectors. Since September 2014, he has been a faculty member at Gyeongsang National University, rising through the ranks from Assistant Professor to Associate Professor and now to Full Professor. He also served as a Visiting Scholar at the ATHENA Lab at Georgia Institute of Technology in Atlanta, USA, from 2018 to 2019. Prior to his tenure at GNU, Prof. Lee worked as a Senior Researcher at the Korea Railroad Research Institute (KRRI), where he was involved in cutting-edge projects for high-speed railroad position detection systems and microwave heating for rapid tunnel excavation. Additionally, he has contributed significantly to international standardization efforts related to RFID and Photovoltaic (PV) systems during his time at the Korea Testing Laboratory (KTL).

Research Interests

Prof. Wang-Sang Lee’s research interests lie in a range of advanced RF and microwave engineering fields. His primary focus includes the design and analysis of antennas, circuits, and systems for both near- and far-field wireless power transfer and data communication applications. He has a keen interest in developing innovative solutions in RFID and IoT-based sensing, positioning, and monitoring for smart manufacturing. Prof. Lee’s work also addresses electromagnetic interference (EMI) shielding, filtering, cabling, and grounding to enhance the EMC (electromagnetic compatibility) of modern electronic systems. His research has contributed to the advancement of both theoretical and practical aspects of RF and microwave technologies, particularly in smart and beamforming antenna systems, wideband circular polarization antennas, and reconfigurable feeding networks.

Awards

Prof. Wang-Sang Lee has been the recipient of numerous prestigious awards and honors throughout his career. Notably, he was honored with the Best Paper Award by several organizations, including the Institute of Electronics and Information Engineers (IEIE) and the Korean Institute of Electromagnetic Engineering and Science (KIEES) during 2016-2020. He also received the Young Researcher Award from KIEES in 2017. His academic excellence was recognized with the Best Ph.D. Dissertation Award from KAIST in 2014, and he earned the Grand Prize in the 2012 Doctoral Research Achievement Award at KAIST. Prof. Lee’s commitment to high-quality research is also reflected in his Honorable Mention at the IEEE APS/URSI conference in 2020 and his paper award at the 7th Annual IEEE International Conference on RFID in 2013.

Publications

Prof. Lee has authored and co-authored several influential research articles in prominent journals and conferences. Some of his key publications include:

  1. Lee, W.-S., et al. (2013). “HF Near-field Power Transfer and Communications Using Antiparallel Loops,” IEEE Transactions on Microwave Theory and Techniques.
    • Cited by: Over 100 citations.
  2. Lee, W.-S., et al. (2016). “Wideband Antenna with Integrated Filters for UWB RF Transceivers,” IEEE Antennas and Wireless Propagation Letters.
    • Cited by: Over 75 citations.
  3. Lee, W.-S., et al. (2019). “Reconfigurable Feeding Networks for Smart Antennas in 5G Communications,” Journal of Electromagnetic Engineering and Science.
    • Cited by: Over 50 citations.
  4. Lee, W.-S., et al. (2020). “Electromagnetic Interference and Shielding for Smart Manufacturing Systems,” IEEE Transactions on Industrial Electronics.
    • Cited by: Over 30 citations.

These publications have contributed significantly to the fields of RF/microwave system design, wireless power transfer, and EMC, cementing Prof. Lee’s reputation as a leading researcher in his areas of expertise.

Conclusion

Prof. Wang-Sang Lee is an accomplished academic whose contributions to the field of RF and microwave engineering have made a lasting impact. His research not only advances theoretical knowledge but also addresses practical challenges in areas like wireless power transfer, electromagnetic compatibility, and smart manufacturing systems. With a strong academic background and extensive professional experience, Prof. Lee continues to push the boundaries of innovation in his field. Through his numerous publications, awards, and professional services, he has earned recognition as a thought leader in RF and microwave technology. Prof. Lee’s ongoing work promises to continue shaping the future of telecommunications, transportation, and other high-tech industries.

Muhammad Noman Shahid | Mechanical Engineering | Best Researcher Award

Mr.Muhammad Noman Shahid | Mechanical Engineering | Best Researcher Award

MS Scholar Capital University of Science and Technology Pakistan

Muhammad Noman Shahid is a dedicated Mechanical Engineer currently pursuing an MS in Mechanical Engineering at CUST, Islamabad. With a CGPA of 4.00/4.00 and a solid foundation in mechanical engineering principles, Muhammad’s expertise spans FEA, CFD, topological optimization, and CAD modeling. His academic and professional journey reflects his commitment to innovation and excellence in the engineering field.

Profile

ORCiD

Education

🎓 Muhammad Noman Shahid is completing his MS in Mechanical Engineering at Capital University of Science and Technology (CUST), Islamabad, with an expected graduation date of July 2025 and a perfect CGPA of 4.00/4.00. He also holds a BS in Mechanical Engineering from the same institution, achieved from 2019 to 2023, where he worked on the “Design and Development of Continuous Passive Motion (CPM) Machine for Post Knee Surgery Rehabilitation” as his final year design project.

Experience

💼 Muhammad’s professional experience includes an internship at SABRO Air Conditioning Pakistan in Islamabad, where he gained over 200 hours of hands-on experience in various HVAC manufacturing processes. His contributions included optimizing production time, ensuring product integrity, and enhancing overall HVAC system efficiency. Muhammad has also demonstrated leadership in numerous extracurricular roles, such as Focal Person at Pakistan Nuclear Society and President Media at Al-Muhandis Society, CUST.

Research Interests

🔬 Muhammad’s research interests lie in mechanical engineering, focusing on fluid dynamics, computational modeling, topological optimization, and biomechanics. He is particularly passionate about developing innovative solutions in tissue engineering and energy storage systems.

Awards and Funding

🏅 Muhammad has received several accolades for his academic excellence and innovative projects. In 2024, he achieved the Chancellor’s Honor Roll and secured the 3rd position in Mechanical Engineering (Entrepreneurship) at the 2nd Federal Engineering Capstone Expo. He also received IGNITE funding under the National Technology Fund’s Grossroot ICT Research Initiative for his final year design project.

Publications

📚 Muhammad has published significant research work, including:

  1. “Computational Investigation of the Fluidic Properties of Triply Periodic Minimal Surface (TPMS) Structures in Tissue Engineering,” Designs, vol. 8, no. 4, 2024. Link
    • Cited by: Articles in tissue engineering and fluid dynamics journals.
  2. “A Biomechanical Approach for Computational Assessment of Heavy Payload Robots in Human-Robot Accident Scenarios for Industry 4.0,” Nanotechnology Reviews, 2023. [In Review]