Dr. Xin Zhou | Engineering | Best Researcher Award

Dr. Xin Zhou | Engineering | Best Researcher Award

Dr. Xin Zhou | Engineering – Lecture at Shanghai University of Electric Power, China

Dr. Xin Zhou is a passionate and emerging researcher in the field of automation engineering, currently serving as a lecturer at Shanghai University of Electric Power. With a solid international educational background and hands-on research in robotics and intelligent optimization, he brings both academic insight and practical relevance to his work. Dr. Zhou has focused his career on robotic path planning, artificial intelligence in manufacturing, and intelligent control systems. His rapid contributions to both the theoretical foundations and industrial applications of intelligent robotics make him a promising candidate for the Best Researcher Award.

Education:

Dr. Zhou’s academic path spans several prestigious institutions across China, the UK, and Australia. He received his Ph.D. in Control Science and Engineering from East China University of Science and Technology in 2022, concentrating on intelligent algorithms and robotic optimization. He earned his Master’s degree in Digital Systems and Communication Engineering from the Australian National University (2016–2017), developing skills in communication and embedded systems. His undergraduate training was jointly conducted at the University of Liverpool and Xi’an Jiaotong-Liverpool University (2011–2015), where he majored in Electrical Engineering and Automation, providing a strong technical foundation for his current work.

Profile:

Orcid

Experience:

Since August 2022, Dr. Zhou has been working as a lecturer at the School of Automation Engineering, Shanghai University of Electric Power. In this position, he teaches undergraduate and graduate courses while engaging in active research. He has participated in two completed projects funded by the National Natural Science Foundation of China (NSFC), focusing on welding robotics and production scheduling under uncertainty. Dr. Zhou is also leading a current industry-funded research project on motion planning algorithms for robotic systems used in complex maintenance tasks. His combination of academic research and industrial cooperation demonstrates a comprehensive and practical research profile.

Research Interest:

Dr. Zhou’s primary research interests include robotic path planning, multi-objective optimization, intelligent algorithms, and smart manufacturing systems. He specializes in developing evolutionary algorithms and applying them to real-world robotic control challenges, especially in arc welding scenarios. His work aims to enhance the intelligence, flexibility, and adaptability of autonomous robotic systems, contributing to Industry 4.0 initiatives. He is particularly known for his work on decomposition-based optimization methods and real-time obstacle avoidance strategies.

Awards:

While Dr. Zhou is still early in his career, he has already made notable contributions to applied innovation, as evidenced by three Chinese patents in the area of robotic path planning. These patents include novel systems and methods for arc welding robot navigation and gantry-type robotic control, with the most recent filed in December 2023. His work in patented technologies reflects his practical approach to academic research and commitment to industry-aligned solutions.

Publications:

Dr. Zhou has authored and co-authored several influential journal papers. Below are seven key publications, with emojis, journal names, publication years, and citation notes:

πŸ“˜ A decomposition-based multiobjective evolutionary algorithm with weight vector adaptation – Swarm and Evolutionary Computation, 2021. Cited for its novel adaptive mechanism in multi-objective optimization.

πŸ€– An approach for solving the three-objective arc welding robot path planning problem – Engineering Optimization, 2023. Frequently referenced in robotics and optimization studies.

πŸ› οΈ Online obstacle avoidance path planning and application for arc welding robot – Robotics and Computer-Integrated Manufacturing, 2022. Cited in real-time control literature.

πŸ” A Collision-free path planning approach based on rule-guided lazy-PRM with repulsion field for gantry welding robots – Robotics and Autonomous Systems, 2024. Recent paper gaining citations in dynamic path planning.

πŸ“š A survey of welding robot intelligent path optimization – Journal of Manufacturing Processes, 2021. Serves as a key reference for scholars in the welding robotics field.

🧠 Rule-based adaptive optimization strategies in robotic welding systems – Under review, targeted at IEEE Transactions on Industrial Informatics.

πŸ”„ Multi-objective task sequencing and trajectory planning under dynamic constraints – Manuscript in progress for Journal of Intelligent Manufacturing.

Conclusion:

Dr. Xin Zhou is a standout young researcher whose work in robotic path planning and intelligent optimization has already made a significant impact in the field of automation. His research integrates high-level algorithm development with real-world engineering applications, making his contributions both academically valuable and practically useful. With a growing body of well-cited publications, involvement in both national and industry-sponsored projects, and active innovation through patents, Dr. Zhou is a strong candidate for the Best Researcher Award. His trajectory reflects both dedication and innovation, and he continues to show strong potential to lead transformative work in intelligent automation in the years ahead.

 

 

 

Iman Khosravi | Engineering | Best Researcher Award

Dr. Iman Khosravi | Engineering | Best Researcher Award 

Assistant Professor at Department of Geomatics Engineering, Faculty of Civil Engineering & Transportation, University of Isfahan, Iran 

Dr. Iman Khosravi is an Assistant Professor at the University of Isfahan, Iran, in the Department of Geomatics Engineering, Faculty of Civil Engineering and Transportation. A specialist in Remote Sensing and Photogrammetry, he has made substantial academic and scientific contributions through research, teaching, and interdisciplinary collaborations. He has actively participated in national and industry-based projects and is recognized for his leadership in academic program development and innovation. His scientific expertise is grounded in image processing, pattern recognition, and surveying technologies, where he continues to shape the future of geomatics education and research.

profile

google scholar

Education

Dr. Khosravi obtained his Ph.D. in Remote Sensing Engineering in 2018 from the University of Tehran, one of Iran’s leading institutions for advanced studies in geographical sciences. Following his doctoral completion, he further refined his research skills as a postdoctoral researcher in the Department of Remote Sensing & GIS, Faculty of Geography, University of Tehran. This strong academic foundation enabled him to pursue a comprehensive academic and research career with a focus on both theoretical knowledge and applied innovations.

Experience

Currently serving as an Assistant Professor at the University of Isfahan, Dr. Khosravi brings years of practical and academic experience in the fields of geomatics, surveying, and remote sensing. His academic role is complemented by his service in various departmental and institutional leadership positions, including roles as Educational Deputy, Research Deputy, and Deputy of the Industry Relations Office. He also directs the Specialized Career Guidance and Employment Center, fostering industry-academia connections. His background includes supervising national projects and offering consultancy in remote sensing and surveying engineering initiatives.

Research Interest

Dr. Khosravi’s research is centered on the integration and advancement of radar and optical remote sensing, photogrammetry, and high-resolution image processing for geospatial applications. He is especially focused on the development of object-oriented image analysis and the application of pattern recognition techniques to spatial data. His work often explores the synergy between theoretical models and real-world application, including environmental monitoring and urban infrastructure assessment through advanced survey techniques. He is also committed to innovation in unmanned aerial vehicle (UAV) photogrammetry and educational methods in analytical photogrammetry.

Award

Dr. Khosravi is nominated for the Best Researcher Award in recognition of his remarkable publication record, multidisciplinary contributions, and academic leadership. With more than 25 peer-reviewed journal articles indexed in SCI and Scopus, over 300 citations, two published textbooks with ISBNs, and involvement in five research projects, he exemplifies academic excellence. His continued efforts to blend scientific rigor with educational advancement and practical implementation position him as a leader in the geomatics research community.

Publication

Among his published work, the following are selected key contributions:

β€œUrban Green Space Classification Using Object-Oriented Techniques” (2017, Remote Sensing Letters) – Cited by 32 articles.

β€œFusion of Radar and Optical Imagery for Surface Change Detection” (2018, International Journal of Applied Earth Observation and Geoinformation) – Cited by 27 articles.

β€œObject-Based Image Analysis in Agricultural Monitoring” (2019, GIScience & Remote Sensing) – Cited by 19 articles.

β€œUAV-Based Photogrammetry for Urban Infrastructure Mapping” (2020, ISPRS International Journal of Geo-Information) – Cited by 15 articles.

β€œPattern Recognition in High-Resolution Satellite Imagery” (2021, Sensors) – Cited by 11 articles.

β€œIntegration of GIS and Remote Sensing for Land Use Planning” (2022, Land Use Policy) – Cited by 9 articles.

β€œMachine Learning Approaches in Remote Sensing Classification” (2023, Computers & Geosciences) – Cited by 6 articles.

Each of these articles demonstrates his commitment to advancing remote sensing techniques and their applications across diverse fields, reflecting strong interdisciplinary relevance.

Conclusion

Dr. Iman Khosravi exemplifies the qualities of a top-tier researcher through his commitment to high-impact research, publication excellence, academic authorship, and service to the scholarly and professional communities. His holistic contribution to the fields of remote sensing and geomatics engineering makes him an outstanding candidate for the Best Researcher Award. His continued pursuit of innovation and mentorship ensures that his influence extends beyond publicationsβ€”nurturing future scholars and fostering cross-sector collaboration.

Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering – Civil Engineering at Western Sydney University, Australia

Kazem Javan is an accomplished researcher and PhD student in Civil and Environmental Engineering at Western Sydney University. He is passionate about advancing sustainable infrastructure solutions through innovative engineering approaches that address environmental challenges. His research focuses on developing durable, acid-resistant materials for sewer pipe rehabilitation, emphasizing the use of sustainable, recycled materials to reduce COβ‚‚ emissions. Kazem is also involved in cutting-edge projects related to carbon-absorbing concrete, aiming to contribute to the circular economy. He brings a wealth of experience in environmental engineering, particularly in water management and resource efficiency, which he integrates into his academic work and professional practice.

Profile:

Google Scholar

Education:


Kazem Javan’s educational journey is rooted in Civil and Environmental Engineering. He is currently pursuing his PhD in Civil Engineering at Western Sydney University, with a focus on developing sustainable materials for infrastructure. Before this, Kazem completed a Master’s in Civil Engineering with a specialization in Water Engineering, where his research examined the impacts of climate change on water resources. His academic foundation began with a Bachelor’s in Civil Engineering, which provided him with a strong grasp of structural mechanics, geotechnical engineering, and transportation systems. This comprehensive academic background forms the foundation for his innovative work in sustainable engineering.

Experience:


Kazem Javan has significant experience in both the academic and professional domains of civil and environmental engineering. He currently works as an Environmental and Civil Engineering Manager, where he leads projects focusing on sustainable infrastructure development and low-emission technologies. In this role, he ensures compliance with environmental regulations and integrates renewable resource utilization in engineering practices. Previously, Kazem was a Technical Supervisor at Ideh Afroz Aria Company, where he supervised water infrastructure projects and integrated climate resilience strategies. His broad experience allows him to combine theoretical knowledge with practical solutions in real-world applications, enhancing both the sustainability and efficiency of civil engineering projects.

Research Interests:

Kazem’s research interests are centered around sustainable engineering solutions, focusing on the development of materials and systems that contribute to environmental preservation and climate change mitigation. His current research explores the use of recycled materials, such as broken glass and mine by-products, for sewer pipe rehabilitation and the creation of durable, acid-resistant coatings. Kazem is also dedicated to advancing carbon-absorbing concrete technologies and is actively involved in the CRC SmartCrete project, where he explores the potential of waste minerals to enhance sustainability in construction. His work in environmental engineering spans areas such as water resource management, renewable energy, waste management, and the water-energy-food nexus, all aimed at reducing environmental impact.

Awards:


Kazem Javan has been recognized for his exceptional academic and professional achievements. He was awarded the SmartCrete CRC and Western Sydney University Postgraduate Research Scholarship, which supports his ongoing research into sustainable infrastructure and material innovations. This award highlights Kazem’s commitment to advancing sustainability in the engineering field, particularly through the development of eco-friendly solutions that can have a lasting impact on construction practices and environmental protection. His ability to combine technical expertise with a strong focus on sustainability has earned him the recognition he deserves.

Publications:


Kazem has contributed significantly to the academic community, publishing several impactful papers in prestigious journals. His work addresses critical issues in water resource management, environmental sustainability, and the effects of climate change on infrastructure. Below are some of his notable publications:

  1. Javan, K., Banihashemi, S., Nazari, A., et al. (2025). Coupled SWMM-MOEA/D for Multi-Objective Optimization of Low Impact Development in Urban Stormwater Systems. Journal of Hydrology 🌍 (Cited by: 12)
  2. Javan, K., Darestani, M., Ibrar, I., et al. (2025). Interrelated Issues within the Water-Energy-Food Nexus with a Focus on Environmental Pollution for Sustainable Development: A Review. Environmental Pollution 🌱 (Cited by: 9)
  3. Javan, K., Altaee, A., BaniHashemi, S., et al. (2024). A Review of Interconnected Challenges in the Water–Energy–Food Nexus: Urban Pollution Perspective towards Sustainable Development. Science of the Total Environment πŸ™οΈ (Cited by: 16)
  4. Javan, K., & Darestani, M. (2024). Assessing Environmental Sustainability of a Vital Crop in a Critical Region: Investigating Climate Change Impacts on Agriculture Using the SWAT Model and HWA Method. Heliyon 🌾 (Cited by: 5)
  5. Javan, K., Altaee, A., Darestani, M., et al. (2023). Assessing the Water–Energy–Food Nexus and Resource Sustainability in the Ardabil Plain: A System Dynamics and HWA Approach. Water πŸ’§ (Cited by: 20)
  6. Javan, K., Mirabi, M., Hamidi, S. A., et al. (2023). Enhancing Environmental Sustainability in a Critical Region: Climate Change Impacts on Agriculture and Tourism. Civil Engineering Journal πŸ—οΈ (Cited by: 3)
  7. Javan, K., Lialestani, M. R. F. H., Ashouri, H., & Moosavian, N. (2015). Assessment of the Impacts of Nonstationarity on Watershed Runoff Using Artificial Neural Networks: A Case Study in Ardebil, Iran. Modeling Earth Systems and Environment 🌍 (Cited by: 8)

Conclusion:


Kazem Javan is an outstanding candidate for the β€œBest Researcher Award,” thanks to his groundbreaking work in sustainable engineering, water management, and climate change mitigation. His dedication to creating environmentally friendly materials and improving construction practices positions him as a leader in his field. With a strong academic background, extensive professional experience, and a proven track record of impactful research, Kazem continues to make significant contributions to the engineering community. His work not only addresses pressing global environmental issues but also sets the stage for a more sustainable future in civil and environmental engineering. His commitment to integrating innovative solutions into practice makes him highly deserving of this prestigious recognition.

NEERAJ KUMAR | MECHANICAL ENGINEERING | Best Researcher Award

Dr. NEERAJ KUMAR | MECHANICAL ENGINEERING | Best Researcher Award

Dr. Neeraj Kumar is an accomplished academic and researcher specializing in mechanical engineering, with a strong focus on fluid power systems, renewable energy, and automation. Currently serving as an Assistant Professor at Malla Reddy Engineering College for Women, Hyderabad, he has a rich background in academia and research. His work primarily revolves around electrohydraulic transmission systems, control strategies, and power optimization techniques for wind turbines. With multiple peer-reviewed publications and conference presentations, Dr. Kumar contributes significantly to the advancement of energy-efficient technologies.

profile

orcid

Education

Dr. Neeraj Kumar pursued a direct Ph.D. after his Bachelor’s degree, earning his doctorate from the National Institute of Technology (NIT) Meghalaya between 2016 and 2023. His doctoral research focused on Electro-hydrostatic Transmission System Control for Maximum Power Tracking of Horizontal Axis Wind Turbine with Pump Fault, encompassing areas such as fluid power control, renewable energy, and automation. He completed his Bachelor of Engineering in Mechanical Engineering at Shri Dharmasthala Manjunatheshwara College of Engineering and Technology (SDMCET), Karnataka, achieving a distinction with a CGPA of 8.65.

Experience

Dr. Kumar has extensive teaching experience, having served as an Assistant Professor at various institutions. He is currently with Malla Reddy Engineering College for Women, Hyderabad. Before this, he held positions at Guru Nanak Institutions Technical Campus and Sityog Institute of Technology, Aurangabad. He has also contributed to online education as a subject expert in mechanical engineering with Chegg Pvt. Ltd. His administrative roles include serving as Head of Department (Mechanical Engineering) and NAAC Coordinator at Sityog Institute of Technology.

Research Interests

Dr. Kumar’s research interests lie in CFD Analysis, Hydraulic System Design and Control, Renewable Energy, Non-Linear Dynamics, and Automation. His work focuses on the development of fault-tolerant control strategies for fluid power transmission systems, particularly in wind energy applications. He has expertise in software tools such as MATLAB Simulink, Ansys, LabVIEW, and automation simulation platforms.

Awards and Recognitions

Dr. Kumar has been recognized for his contributions to academia and research. Notably, he has served as a reviewer for prestigious journals such as the Journal of Scientific and Industrial Research (2021) and Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering (2023). He also qualified the GATE examination in 2016 with an All India Rank of 24,299.

Selected Publications

Dr. Kumar has authored several influential research papers in peer-reviewed international journals. Some of his key publications include:

Kumar, N., Kumar, R., Sarkar, K. B., Maity, S. (2020) – Condition monitoring of hydraulic transmission system with variable displacement axial piston pump and fixed displacement motor. Materials Today: Proceedings (Cited in multiple studies on hydraulic system monitoring).

Kumar, N., Kumar, R., Sarkar, K. B., Maity, S. (2021) – Performance analysis of swash plate axial piston pump with different hydraulic fluids at different temperatures. Journal of Scientific and Industrial Research, Vol. 80.

Kumar, N., K. B. Sarkar, Vekaiah, P., K. B., Maity, S. (2023) – Wind turbine electrohydraulic transmission system control for maximum power tracking with pump fault. Journal of Systems and Control Engineering, Vol. 237(9), 1702-1716.

Kumar, N., Vekaiah, P., Sarkar, K. B., Maity, S. (2024, Accepted) – Electrohydraulic transmission system control with pump fault through fuzzy fractional order PID controller.

Kumar, N., Sarkar, K. B., Maity, S. (2018) – Recent development and application of the hydrostatic transmission system. Advances in Mechanical Engineering.

Conclusion

Dr. Neeraj Kumar’s extensive research output, innovative contributions, and commitment to advancing engineering sciences make him a highly deserving candidate for the Best Researcher Award. His work in electro-hydrostatic transmission systems and renewable energy has a significant impact on both academia and industry, positioning him as a leader in his field.

Shivam Aggarwal | Engineering | Best Researcher Award

Dr. Shivam Aggarwal | Engineering | Best Researcher Award

Research Scholar | J. C. Bose University of Science and Technology, YMCA | India

Shivam Aggarwal is a dedicated Mechanical Engineer with a robust academic background and industry experience. He holds a Master’s degree in Mechanical Engineering and is in the process of completing his Ph.D. His expertise lies in mechanical design, statics, dynamics, thermodynamics, and materials science. Throughout his career, he has excelled in both practical engineering and academia, combining theoretical knowledge with hands-on experience in designing and testing mechanical systems. Currently, he serves as an Assistant Professor at the Echelon Institute of Technology, where he imparts knowledge to future engineers. Known for his commitment to academic excellence, research, and student mentorship, Shivam seeks to contribute further to the academic community, particularly in areas like finite element analysis and sustainable engineering.

Profile

Scholar

Education
Shivam Aggarwal’s educational journey showcases his deep commitment to the field of mechanical engineering. He pursued his Ph.D. in Mechanical Engineering at J.C. Bose University of Science & Technology, Faridabad, India, and is currently in the final stages of his thesis submission in 2024. Prior to that, he earned his Master’s in Mechanical Engineering from the same institution in 2021, specializing in advanced mechanical concepts. His academic foundation was further solidified by his Bachelor’s degree in Mechanical Engineering from Satyug Darshan Institute of Engineering & Technology, Faridabad, in 2019. Additionally, Shivam completed a Diploma in Mechanical Engineering from Government Polytechnic Manesar, Gurugram, in 2016, which provided him with a strong practical base. His education underscores a continuous pursuit of knowledge and excellence in mechanical engineering.

Experience
Shivam Aggarwal’s professional journey spans both academia and industry. He currently serves as an Assistant Professor in the Mechanical Engineering Department at Echelon Institute of Technology, where he has been shaping the minds of future engineers since June 2024. His role includes designing curricula, delivering lectures on subjects such as thermodynamics and fluid mechanics, conducting research, and mentoring students. Before venturing into academia, Shivam gained valuable industry experience. He worked as a Graduate Engineer Trainee at Frick India Pvt Ltd (January–May 2019), where he honed his skills in mechanical design and system development. He also worked as a Trainee at Dauji Metal Pvt Ltd and Forgewell India Pvt Ltd, further strengthening his practical knowledge in mechanical engineering processes, testing, and evaluation.

Research Interest
Shivam’s research interests lie in several core areas of mechanical engineering. He is particularly passionate about finite element analysis (FEA), sustainable engineering, and the application of advanced materials in automotive and mechanical systems. His work often focuses on optimizing mechanical components for performance and sustainability. He has explored the application of composite materials in electric rickshaw leaf springs, automotive leaf spring design, and energy-efficient systems. Additionally, his interest extends to robotics, automation, and the integration of IoT for smart systems in agriculture. These research pursuits reflect his dedication to advancing mechanical engineering practices through innovation and sustainability.

Award
Shivam Aggarwal’s dedication to excellence has been recognized through several prestigious awards and nominations. Notably, he won the Best Innovation Award in 2022 at YMCA University for his work in mechanical engineering. He has also received accolades for his performance in academic and professional assessments. Shivam passed the GATE exam in Mechanical Engineering, a significant achievement that highlights his theoretical and practical expertise. His contributions to mechanical engineering have earned him eligibility for the University Research Scholarship at YMCA University. Additionally, Shivam has received multiple certifications, including ISRO-IIRS Certification, and has excelled in national-level exams like the National Olympiad in Mechanical Engineering by ASSOCHAM and TCS National Qualifier Test.

Publication
Shivam Aggarwal has contributed to several high-quality publications in mechanical engineering. His research is widely acknowledged within the academic community. Some of his notable publications include:

  1. Sandwich Composite Material Analysis for its Application in Electric Rickshaw Leaf Spring, Taylor & Francis Journal of Mechanics Based Design and Structures, SCIE (2024).
  2. Analysis of Glass Fiber-reinforced Composite Leaf Springs in a Light Commercial Vehicle, Journal of Scientific Report, Nature Publishing Group, UK, SCIE (2024).
  3. Design and Analysis of Load Stiffness Tester for Dual Applications in Measurement of Spring Stiffness and Walnut Shell Stiffness, Lecture Notes in Mechanical Engineering (Springer Nature), Scopus (2024).
  4. Investigation regarding the Replacement of Composite Material Leaf Springs with Spring Steel Leaf Springs in Automotive Vehicles: A Review, IOP Conference Series Material Science & Engineering, indexed in WoS (2024).
  5. Optimization of Various Percentages of Fibers in Fiber Reinforced Composite Material Leaf Springs in Vehicles, IOP Conference Series Material Science & Engineering, indexed in WoS (2024).
  6. IoT-Based Treadle Pump and Smart Flow Measurement Device for Irrigation, Proceedings of the 10th International Symposium on Fusion of Science and Technology (2024).

These works highlight Shivam’s expertise in materials science, mechanical design, and sustainable engineering, with several being widely cited in related research fields.

Conclusion
Shivam Aggarwal is a highly accomplished Mechanical Engineer and academic, whose work spans both practical engineering and cutting-edge research. His experience as an educator, coupled with his academic achievements and industry exposure, has equipped him with a unique perspective on engineering solutions. Through his research, publications, and patents, Shivam continues to contribute meaningfully to the field of mechanical engineering. His strong foundation in design, materials science, and sustainable engineering, combined with his passion for teaching and innovation, makes him a valuable asset to the academic and engineering communities. As he advances his career, Shivam remains committed to inspiring and mentoring the next generation of engineers, fostering their academic and professional growth.

Licheng Zhang | Fuel Consumption | Best Researcher Award

Dr. Licheng Zhang | Fuel Consumption | Best Researcher Award

Senior Engineer at Chang’an University, China.

Dr. Zhang Licheng is a Senior Engineer at Chang’an University, specializing in traffic  engineering and control. He has a profound interest in sustainable driving behavior, fuel consumption modeling, and autonomous vehicle efficiency. With 33 publications and 10 patents to his name, his pioneering work in fuel consumption prediction models has advanced the understanding of vehicular dynamics. Dr. Zhang’s research integrates advanced technologies and data analytics to promote eco-driving and intelligent vehicle systems, making significant contributions to green transportation. He is a recognized thought leader in the domain, blending academic rigor with practical applications to impact the automotive industry globally.

Profile Verification

Scopus 

Education

Dr. Zhang Licheng completed his undergraduate studies in Computer Science and Technology, followed by a master’s and doctoral degree in Traffic Engineering and Control. His advanced education laid the foundation for his research on driving behavior and energy consumption models. At Chang’an University, his academic training focused on creating innovative methodologies to optimize driving efficiency and fuel usage. His educational journey reflects his passion for merging technology with transportation, empowering him to solve critical challenges in intelligent vehicle systems and autonomous driving scenarios.

Experience

Dr. Zhang brings over a decade of experience in automotive engineering and intelligent vehicle research. As a Senior Engineer at Chang’an University, he has led numerous projects funded by prominent organizations, including the National Natural Science Foundation of China. His work emphasizes fuel-efficient driving strategies, autonomous vehicle simulations, and hybrid data modeling for energy optimization. Dr. Zhang has collaborated with global institutions, contributed to 33 journal publications, and mentored young researchers, shaping the future of green transportation technologies.

Research Interests

Dr. Zhang’s research explores energy-efficient driving behavior, integrating multi-source traffic data for ecological vehicle systems. He specializes in developing fuel consumption prediction models, autonomous driving strategies, and motion planning methods for lane-changing scenarios. His studies bridge the gap between driving behavior and environmental sustainability, contributing significantly to the design of energy-efficient autonomous vehicles. Dr. Zhang’s work also addresses real-world applications of digital twin testing and simulation for automated driving technologies.

Awards and Honors

Dr. Zhang Licheng has been honored with the Young Scientist Award, Best Innovation Award, and Excellence in Research Award for his contributions to automotive and traffic engineering. His achievements include receiving grants for prestigious national and provincial projects, along with patents for innovative solutions in eco-driving and autonomous vehicle planning. His exceptional work has been recognized at global conferences, highlighting his commitment to advancing intelligent vehicle systems.

Publications

Ma, S., Chen, C., Zhang, L., Zhang, J., Zhao, X.
Title: AMTrack: Transformer tracking via action information and mix-frequency features
Journal: Expert Systems with Applications
Year: 2025
Citations: 0

Zhang, L., Ya, J., Khattak, A.J., Peng, K., Guo, Y.
Title: Novel fuel consumption models integrating vehicular speed, acceleration, and jerk
Journal: Journal of Intelligent Transportation Systems: Technology, Planning, and Operations
Year: 2024
Citations: 0

Ma, S., Zhao, B., Zhang, L., Hou, Z., Zhao, X.
Title: Correlation Filter based on Trajectory Correction and Context Interference Suppression for Real-Time UAV Tracking
Journal: IEEE Transactions on Intelligent Vehicles
Year: 2024
Citations: 2

Zhang, L., Ya, J., Xu, Z., Xing, Y., Yang, R.
Title: Novel Neural-Network-Based Fuel Consumption Prediction Models Considering Vehicular Jerk
Journal: Electronics (Switzerland)
Year: 2023
Volume: 12
Issue: 17
Citations: 0

Wang, G., Zhang, L., Xu, Z., Qu, X.
Title: Predictability of Vehicle Fuel Consumption Using LSTM: Findings from Field Experiments
Journal: Journal of Transportation Engineering Part A: Systems
Year: 2023
Volume: 149
Issue: 5
Citations: 4

Peng, K., Xing, Y., Zhang, L., Song, Y., Ya, J.
Title: Quantitative Evaluation of Energy-saving Driving Based on Wavelet Transform
Conference: 7th IEEE International Conference on Transportation Information and Safety, ICTIS 2023
Year: 2023
Citations: 0

Zhang, L., Peng, K., Zhao, X., Khattak, A.J.
Title: New fuel consumption model considering vehicular speed, acceleration, and jerk
Journal: Journal of Intelligent Transportation Systems: Technology, Planning, and Operations
Year: 2023
Volume: 27
Citations: 12

Zhang, L., Zhang, T., Peng, K., Zhao, X., Xu, Z.
Title: Can Autonomous Vehicles Save Fuel? Findings from Field Experiments
Journal: Journal of Advanced Transportation
Year: 2022
Citations: 9

Wang, G., Zhang, L., Xu, Z., Wei, T., Qu, X.
Title: FuelNet: A precise fuel consumption prediction model using long short-term memory deep network for eco-driving
Conference: Energy Proceedings
Year: 2020
Citations: 0

Min, H., Zhao, X., Xu, Z., Zhang, L., Wang, R.
Title: Stereo Visual Odometry Based on Robust Features
Journal: Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University
Year: 2017
Citations: 2

Conclusion

Zhang Licheng is a strong candidate for the Best Researcher Award, owing to his innovative contributions to traffic engineering, eco-driving, and energy-efficient vehicular technologies. His well-rounded portfolio of research projects, patents, and publications underscores his dedication to advancing his field. While there is room for growth in global recognition and citation impact, Zhang’s accomplishments make him an exemplary researcher deserving of this prestigious award.

 

Chang He | Composite structures | Best Researcher Award

Mr. Chang He | Composite structures | Best Researcher Award 

PHD student at Tongji University, China

Chang He is a dedicated Ph.D. student in Civil Engineering at Tongji University, Shanghai, where he has distinguished himself through exemplary academic performance and significant contributions to research. With a strong foundation in Civil and Hydraulic Engineering, he has garnered recognition for his innovative approach to integrating smart materials with traditional construction techniques. His commitment to advancing the field of civil engineering is evident in his participation in various high-impact research projects and his proactive engagement in scholarly activities.

Profile

ORCID

Education

Chang He began his academic journey at Shenyang Jianzhu University, where he earned his Bachelor’s degree in Civil Engineering with a commendable GPA of 87.6/100. He was recognized for his academic excellence through several awards, including the Merit Student Award and multiple scholarships. Pursuing further education, he obtained his Master’s degree in Civil and Hydraulic Engineering from Tongji University, achieving a GPA of 84.5/100. Currently, he is advancing his studies as a Ph.D. student in Civil Engineering, where he maintains an impressive GPA of 89.5/100, demonstrating his commitment to academic rigor and research excellence.

Experience

Chang He’s research experience is extensive and multifaceted. He has actively participated in several prominent research projects, including the NSFC Project focused on the integration of spherical piezoelectric smart materials with concrete, and the development of disaster acquisition robot equipment under the National Key R&D Program of China. His involvement in these projects has allowed him to gain hands-on experience in cutting-edge research methodologies and technologies, particularly in the context of structural health monitoring and disaster management. Additionally, he has contributed to the academic community as a reviewer for notable journals, further enhancing his understanding of current research trends and standards.

Research Interest

Chang He’s research interests lie at the intersection of civil engineering and advanced technology. His primary focus includes the application of machine learning and artificial intelligence to analyze and optimize the performance of construction materials and structures. He is particularly interested in exploring how innovative materials, such as fiber-reinforced polymers, can be integrated into traditional concrete structures to enhance their durability and resilience. By leveraging deep learning techniques, Chang aims to develop predictive models that can inform engineering practices and improve the safety and efficiency of civil engineering projects.

Awards

Throughout his academic career, Chang He has received several awards and honors that reflect his dedication to excellence in education and research. Notably, he was awarded the Social Work Scholarship twice, highlighting his commitment to community engagement and social responsibility. Additionally, he received the Second Prize Scholarship twice during his master’s studies, as well as the Third Prize Scholarship and the Merit Student Award during his undergraduate years. These accolades serve as a testament to his hard work, perseverance, and contributions to the academic community.

Publications

Chang He has authored and co-authored several research publications in esteemed journals, demonstrating his commitment to advancing knowledge in his field. His notable works include:

Deep Learning-Based Analysis of Interface Performance between Brittle Engineering Materials and Composites (Expert Systems with Applications, 2024).

Hyperparameter optimization for interfacial bond strength prediction between fiber-reinforced polymer and concrete (Structures, 2023).

Bayesian optimization for selecting efficient machine learning regressors to determine bond-slip model of FRP-to-concrete interface (Structures, 2022).

Semi-supervised networks integrated with autoencoder and pseudo-labels propagation for structural condition assessment (Measurement, 2023).

Application of Bayesian optimization approach for modelling bond-slip behavior of FRP-to-concrete interface (Proceedings of the 12th International Conference on Structural Health Monitoring of Intelligent Infrastructure, 2023).

An acoustic-homologous deep learning method for FRP concrete interfacial damage evaluation (Proceedings of the 12th International Conference on Structural Health Monitoring of Intelligent Infrastructure, 2023).

Conclusion

In conclusion, Chang He embodies the qualities of an exceptional researcher in civil engineering, combining academic excellence with impactful research contributions. His extensive experience, innovative research interests, and notable achievements position him as a strong candidate for the Best Researcher Award. By continuing to push the boundaries of knowledge in his field, Chang He is poised to make significant contributions to civil engineering and society as a whole. His commitment to excellence and passion for research make him a deserving nominee for this prestigious award.

Ahmed Ibrahim | Electrical Engineering | Best Researcher Award

Mr . Ahmed Ibrahim | Electrical Engineering | Best Researcher Award 

Graduate Research Assistant , Florida International University , United States

Ahmed Mosaad Abdelfattah Ibrahim is an accomplished electrical engineer with over eight years of experience in both industry and academia. He holds a BSc and an MSc with honors from Mansoura University, where he also served as an assistant lecturer and academic researcher. Currently, he is a Graduate Research Assistant pursuing a PhD in Electrical Engineering at Florida International University (FIU). Ahmed’s expertise spans electrification of transportation, microgrids, and renewable energy systems. He has received prestigious scholarships, including Erasmus and USAID, for his academic contributions and research excellence.

Profile

Google Scholar

Education πŸŽ“

  • PhD in Electrical Engineering (January 2024 – Present): Pursuing a doctorate at Florida International University, focusing on energy systems research, specifically in controlling multi-port converters for microgrids and wireless power transfer systems.
  • MSc in Electrical Engineering (April 2018 – April 2021): Mansoura University, Egypt. His research explored wireless power transfer for electric vehicle charging.
  • BSc in Electrical Engineering (September 2011 – June 2016): Graduated with honors from Mansoura University, Egypt, with a thesis on smart grid load management.
  • High School: Graduated with a GPA of 3.92/4, ranking first in both school and state.

Experience πŸ’Ό

  • Graduate Research Assistant, FIU, Miami, FL (January 2024 – Present): Working on power routing in microgrids and optimized energy transfer systems. Engages in writing journal papers and proposals in electrification and microgrid research.
  • Assistant Lecturer, Mansoura University, Egypt (August 2018 – December 2023): Taught various electrical engineering courses and conducted research on power systems.
  • Scientist Engineer (Volunteer), Electro Green, Canada (December 2022 – December 2023): Led R&D for Electric Mobility systems, developed prototypes, and collaborated with industry partners.
  • Electrical Site Engineer, GS E&C, Cairo, Egypt (December 2017 – November 2018): Managed construction supervision, commissioning, and maintenance of electrical systems in a major industrial project.

Research Interests πŸ”¬

Ahmed’s research focuses on:

  1. Transportation Electrification
  2. Wireless Power Transfer Systems
  3. Hybrid Microgrid Control and Stability
  4. Magnetic Energy Routers
  5. Renewable Energy Systems
  6. Battery Management Systems

Awards πŸ†

  • USAID Scholarship, Arizona State University, USA (2023): For research on enhancing the resilience and stability of microgrids.
  • Erasmus Scholarship, Hellenic Mediterranean University, Greece (2022): For research on wind energy and load management.
  • Erasmus Scholarship, University of Central Lancashire, UK (2020): For designing a control system for wireless electric vehicle charging.

Publications πŸ“š

  • β€œAnalysis of Inductive Characteristics for various Helical and Spiral Coil Configurations”, Mansoura Engineering Journal, Mar. 2021, Link.
  • β€œHardware Implementation of Hybrid Data Driven-PI Control Scheme for Resilient Operation of Standalone DC Microgrid”, Batteries, 2024, Link.

         β€œState-of-the-Art Electric Vehicle Modeling: Architectures, Control, and Regulations”, Electronics, 2024, Link.

Conclusion

Ahmed Mosaad Abdelfattah Ibrahim presents a strong case for the β€œBest Researcher Award” due to his comprehensive academic background, diverse research experience, and leadership in both industry and academia. His international exposure and contributions to key areas of electrical engineering research further strengthen his candidacy. Focusing on a specialized area of research, enhancing his funding portfolio, and expanding his research output could further improve his prospects for the award. Overall, Ahmed demonstrates substantial potential and achievements, making him a worthy candidate for consideration.

Adesola Bankole | Engineering Processes | Inspirational Scientist Visionary Award

Mr. Adesola Bankole | Engineering Processes | Inspirational Scientist Visionary Award

Principal Engineer/Instructor at Nigerian Television Authority, Nigeria

Engr. Bankole Adesola Temitope is a distinguished engineer and academic specializing in Electrical and Electronic Engineering with a focus on control systems and broadcasting technologies. Currently serving as a Principal Engineer at NTA Television College, his career spans a blend of industrial and academic experiences, showcasing his expertise in both practical engineering applications and educational instruction. With a solid background in engineering and a commitment to advancing technological solutions, he has significantly contributed to his field through his work in television engineering and control system design.

Profile

ORCID

Education

Engr. Bankole holds an M.Sc. in Electrical and Electronic Engineering from the University of Lagos and a B.Eng. in Electrical & Electronics Engineering from The Federal University of Technology, Akure. His academic journey reflects a strong foundation in engineering principles, underpinned by high academic performance, including a notable CGPA of 4.30/5.00 in his master’s program. This rigorous academic training has equipped him with advanced knowledge and skills that have supported his career and research endeavors.

Experience

Engr. Bankole’s professional experience encompasses both industrial and academic roles. He currently holds the position of Principal Engineer at NTA Television College, where he contributes to both engineering practice and education. His prior roles include Senior Engineer and Engineer at the Nigerian Television Authority, where he focused on broadcasting technology and engineering systems. Additionally, his early career involved work in various sectors, including cold storage systems and refrigeration, which broadened his practical engineering expertise and provided a diverse perspective on technology applications.

Research Interests

Engr. Bankole’s research interests are centered on control systems, signal processing, and energy efficiency. His work includes the development and optimization of control algorithms for robotic systems, as well as advancements in digital television broadcasting. His research aims to enhance the performance and reliability of engineering systems through innovative solutions, reflecting his commitment to addressing contemporary challenges in his field. He is particularly interested in the application of model predictive control and hybrid control systems to improve technological outcomes.

Awards

Throughout his career, Engr. Bankole has received several awards recognizing his academic and professional achievements. Notably, he was honored with the Federal Government Post-graduate Scholarship Award for his outstanding performance in his master’s program and the Oyo State Scholarship Award during his undergraduate studies. These accolades highlight his dedication to excellence and his contributions to the field of engineering.

Publications

Engr. Bankole has authored and co-authored several publications in reputable journals and conference proceedings, contributing to the advancement of knowledge in his field. His publications include:

  1. Bankole, A.T., & Igbonoba, E.E.C. (2023). β€œA Novel Hybrid Proportional Derivative/H-Infinity Controller Design for Improved Trajectory Tracking of a Two-Link Robot Arm.” Journal of Shanghai Jiao Tong University (Science), 28(1), 1-10. Link
  2. Igbonoba, E.E.C., & Bankole, A.T. (2023). β€œInvestigative Assessment of the Impact of Perturbation on the Digital Terrestrial Television Broadcasting Signal.” KIU Journal of Science, Engineering and Technology (KJSET), 2(1), 75-83. Link
  3. Igbonoba, E.E.C., & Bankole, A.T. (2023). β€œSignal Propagation Curve for Digital Television Broadcast Network in Nigeria.” Indian Journal of Engineering, 20, e10ije1010. Link

Conclusion:

Engr. Bankole Adesola Temitope presents a strong candidacy for the Research for Inspirational Scientist Visionary Award. His solid educational background, extensive professional experience, active research contributions, and professional development make him a noteworthy candidate. To further bolster his suitability, focusing on increasing the impact of his research through additional high-impact publications, securing research grants, and expanding his roles in academic and community engagements would be beneficial. Overall, his achievements and dedication to his field align well with the criteria for the award, making him a deserving candidate.

 

Jacques Ganoulis | Engineering | Best Researcher Award

Prof Dr Jacques Ganoulis | Engineering | Best Researcher Award

Prof Dr Jacques Ganoulis , Aristotle University of Thessaloniki, Greece  , Greece

Jacques Ganoulis (Iakovos Gkanoulis) is an eminent Greek hydrologist and civil engineer born in 1945. He is an Emeritus Professor at Aristotle University of Thessaloniki (AUTh), Greece, and serves as Director of the UNESCO Chair and Network INWEB. He has had a distinguished career as a senior consultant with UNESCO-IHP in Paris and has held influential roles in various international water resource management projects. Ganoulis’s expertise spans integrated water resources management, hydrological modeling, and transboundary water governance. His contributions have greatly advanced the field of water science and policy, particularly in the Balkans and Mediterranean regions.

Publication Profile

Google Scholar

Strengths for the Award

  1. Extensive Expertise and Experience:
    • Education: Dr. Ganoulis has a robust academic background, including multiple advanced degrees in civil engineering and hydraulics from prestigious institutions such as Paul Sabatier University and ENSEEIHT.
    • Professional Positions: His career spans various influential roles, including State Secretary for Water in Greece, Senior Consultant at UNESCO-IHP, and Director of the UNESCO Chair and Network INWEB. His involvement in high-impact positions demonstrates significant leadership and expertise.
  2. Noteworthy Contributions:
    • Research and Publications: Dr. Ganoulis has authored several influential publications on topics such as risk analysis of water pollution, transboundary water resources management, and climate change impacts. His work is widely cited and contributes significantly to the field.
    • International Impact: His involvement in international projects and consultancy roles, including work with UNESCO, UNEP, and the EU, highlights his global influence in water resources management and environmental engineering.
  3. Innovative Projects and Initiatives:
    • INWEB: Dr. Ganoulis founded the International Network of Water-Environment Centres for the Balkans (INWEB), which has been recognized by UNESCO and has significantly advanced water management and research in the Balkans.
    • EU and UNESCO Projects: His work on projects like the Dinaric Karst Transboundary Aquifer System Project and the EU TEMPUS and FP6 initiatives shows his commitment to addressing critical water management challenges through innovative solutions.
  4. Awards and Honors:
    • Recognition: Dr. Ganoulis has received several prestigious awards, including the Fulbright Fellowship, Knight of Academic Order from the French Government, and the Alexander-von-Humboldt Research Fellowship, which affirm his contributions and standing in the field.

Areas for Improvement

  1. Broader Dissemination of Work:
    • Public Outreach: While Dr. Ganoulis has a strong academic and professional presence, increasing outreach to non-academic audiences could enhance the impact of his research and solutions. Engaging more with the public and policy-makers can help bridge the gap between research and practical application.
  2. Interdisciplinary Collaboration:
    • Collaborative Projects: Expanding collaborations with researchers in related fields (e.g., social sciences, economics) could further enhance the interdisciplinary nature of his research, addressing complex water management issues from multiple perspectives.
  3. Emerging Technologies:
    • Adapting to New Technologies: Embracing and integrating emerging technologies, such as advanced data analytics and artificial intelligence, could provide new insights and solutions in water resources management and environmental risk assessment.

Education

Jacques Ganoulis holds a Ph.D. in Natural Sciences/Water Resources from Paul Sabatier University, Toulouse, France (1974). He completed his Thèse de Doctorat 3ème Cycle in Groundwater Hydraulics at ENSEEIHT, Toulouse (1971) and earned an M.Sc. in Groundwater Hydraulics from ENSEEIHT (1969). He obtained his Diploma in Civil Engineering/Hydraulics from Aristotle University of Thessaloniki (1968). His academic background provides a strong foundation for his extensive career in water resource management and environmental engineering.

Experience

Ganoulis’s extensive career includes significant roles such as State Secretary for Water in Greece (2015-2019), Senior Consultant at UNESCO-IHP (2012-2015), and Professor at Aristotle University of Thessaloniki (1978-2012). He has been a visiting professor and consultant globally, including roles at the University of Alabama, Technische UniversitΓ€t Erlangen-NΓΌrnberg, and McGill University. His work has focused on integrated water resources management, risk analysis, and capacity building, with substantial contributions to international water governance and transboundary water management.

Awards and Honors

Jacques Ganoulis has received numerous accolades, including the Fulbright Fellowship at the University of Alabama (2022) and the title β€œKnight of Academic Order” from the French Government (2013). He was awarded the Medal of Honorary Recognition by the Greek Hydro-Geological Association (2011) and was elected a member of the French Water Academy (2008). Ganoulis also received the Alexander-von-Humboldt Research Fellowship (1985) and ranked first in his class at AUTh (1968), reflecting his significant contributions to water science and engineering.

Research Focus

Ganoulis’s research primarily centers on integrated water resources management, hydrological modeling, and risk analysis related to water pollution and climate change. He is an expert in transboundary water management, assessing and managing water-related risks such as floods and pollution. His work emphasizes the development of professional networks for research and education, particularly in the Balkans and Mediterranean regions, and includes extensive contributions to understanding and mitigating the impacts of climate change on water resources.

Publications Top Notes

  • Engineering risk analysis of water pollution: probabilities and fuzzy sets πŸŒŠπŸ“š
  • Risk analysis of water pollution πŸŒπŸ“˜
  • Coping with flash floods πŸŒ§οΈπŸ“–
  • Experimental investigation of shallow recirculating flows πŸŒŠπŸ”¬
  • Mountain ecosystem services and climate change: A global overview of potential threats and strategies for adaptation πŸŒ„πŸŒ
  • Risk‐based floodplain management: A case study from Greece πŸŒŠπŸ‡¬πŸ‡·
  • Locating the zone of saline intrusion in a coastal karst aquifer using springflow data πŸŒŠπŸ—ΊοΈ
  • Modelling of water pollution in the Thermaikos Gulf with fuzzy parameters πŸŒŠπŸ”’
  • Evaluating alternative strategies for wastewater recycling and reuse in the Mediterranean area πŸ’§πŸŒ
  • Risk analysis of wastewater reuse in agriculture πŸŒΎπŸ’§
  • Phytoremediation as a prospective method for rehabilitation of areas contaminated by long-term sewage sludge storage: A Ukrainian–Greek case study πŸŒ±πŸ‡ΊπŸ‡¦πŸ‡¬πŸ‡·
  • Climate change and its effects on water Resources: Issues of National and Global Security 🌑️🌍
  • Assessment of phytoremediation potential of native plants during the reclamation of an area affected by sewage sludge 🌿🏞️
  • Coping with floods 🌊🌍
  • Transboundary water resources management: institutional and engineering approaches πŸŒπŸ”§
  • Involving stakeholders in transboundary water resource management: The Mesta/Nestos β€˜HELP’ basin 🌍🀝
  • Transboundary water resources management: a multidisciplinary approach πŸŒπŸ”¬
  • Water resources management and environmental security in Mediterranean transboundary river basins πŸŒπŸ›‘οΈ
  • Water resources engineering risk assessment πŸŒŠπŸ“‰
  • Overexploitation and contamination of shared groundwater resources: management, (Bio) technological, and political approaches to avoid conflicts πŸŒπŸ’§

Conclusion

Jacques Ganoulis is highly deserving of the β€œBest Researcher Award” due to his extensive expertise, impactful contributions, and significant international influence in water resources management and environmental engineering. His pioneering work, especially in risk analysis, transboundary water resources management, and education, demonstrates a profound commitment to advancing the field. By addressing the areas for improvement, such as enhancing public outreach and interdisciplinary collaboration, Dr. Ganoulis could further amplify the impact of his remarkable research contributions.