Dr. Wang Jia | Engineering | Women Researcher Award

Dr. Wang Jia | Engineering | Women Researcher Award

Dr. Wang Jia | Engineering – Student at Shanghai Jiao Tong University, China

Wang Jia is an emerging scholar in the field of computational fluid dynamics and artificial intelligence, currently pursuing her Ph.D. in Transportation Engineering. Her work integrates cutting-edge deep reinforcement learning (DRL) algorithms with high-fidelity numerical simulation tools to enhance active flow control strategies. With a multidisciplinary foundation in hydraulic engineering, computer science, and high-performance computing, she is known for her innovative contributions in simulating and optimizing fluid behavior around complex geometries. Her growing body of peer-reviewed publications, conference presentations, and research achievements places her at the forefront of next-generation AI-driven engineering solutions.

Profile Verified:

ORCID | Google Scholar

Education:

Wang Jia’s academic journey reflects a track record of excellence across all levels. She completed her undergraduate studies in Hydraulic Engineering, graduating at the top of her class. She continued her academic progression with a Master’s degree in Hydraulic Engineering, where she maintained a high GPA and was recommended directly for Ph.D. studies. Currently, she is a Ph.D. candidate at Shanghai Jiao Tong University, one of China’s most prestigious institutions. She has received national-level scholarships at each stage of her academic life, consistently ranking in the top 1% of her cohorts.

Experience:

Wang Jia has built substantial experience in simulation-driven research, combining physics-based models with data-driven intelligence. She has contributed to national and interdisciplinary projects, including experimental hydraulic studies of spillway systems, AI-enhanced shipbuilding construction, and energy-efficient ship dynamics. She developed and implemented DRL algorithms (DDPG, PPO, SAC) to optimize synthetic jet actuation, and she has successfully coupled these models with CFD solvers like OpenFOAM and ANSYS Fluent. Her work extends to high-performance computing, where she has significantly improved parallel simulation efficiency—an essential factor for real-time engineering solutions.

Research Interests:

Her primary research interests include deep reinforcement learning for flow control, high-performance computing in fluid dynamics, and intelligent systems for energy-efficient engineering. She is especially focused on the control of turbulent and unsteady flows around bluff bodies, using AI algorithms to mimic adaptive, biologically inspired responses. Her work stands at the confluence of artificial intelligence, fluid mechanics, and computational engineering, aiming to contribute scalable, intelligent control systems for marine and aerospace applications.

Awards:

Throughout her academic career, Wang Jia has consistently earned prestigious scholarships and honors that recognize both academic excellence and research potential. She received the National Scholarship at the undergraduate, master’s, and doctoral levels—a rare feat. She was also awarded an “Outstanding Oral Presentation” at a national Ph.D. forum and was selected to present at high-profile academic conferences such as ASME’s International Offshore Engineering event. These honors affirm both the quality of her research and her ability to communicate it effectively within the scientific community.

Selected Publications 📚:

  • 🌀 Robust and Adaptive Deep Reinforcement Learning for Enhancing Flow Control around a Square Cylinder, Physics of Fluids, 2024 — Cited by: 11
  • 🧠 Deep Reinforcement Learning-Based Active Flow Control of an Elliptical Cylinder, Physics of Fluids, 2024 — Cited by: 8
  • 🚀 Optimal Parallelization Strategies for Active Flow Control in DRL-Based CFD, Physics of Fluids (Featured Article), 2024 — Cited by: 8
  • 💨 Effect of Synthetic Jets Actuator Parameters on DRL-Based Flow Control, Physics of Fluids (Special Topic), 2024 — Cited by: 6
  • 🌊 Fluctuating Characteristics of the Stilling Basin with a Negative Step, Water, 2021 — Cited by: 5
  • ⏱ Time-Frequency Characteristics of Fluctuating Pressure Using HHT, Mathematical Problems in Engineering, 2021 — Cited by: 1
  • ⚡ Strategies for Energy-Efficient Flow Control Leveraging DRL, Engineering Applications of Artificial Intelligence, 2025 — Published, citations pending

Conclusion:

Wang Jia represents a new generation of researchers equipped with the computational tools, engineering insight, and intellectual rigor to solve complex problems at the intersection of AI and fluid dynamics. Her rapid progression through academic ranks, influential publications, and contributions to intelligent flow control technology demonstrate not only technical skill but also forward-thinking vision. She is especially deserving of recognition through the Women Researcher Award for her excellence in STEM, commitment to innovation, and strong potential for future impact in science and engineering.

 

 

 

Pravin Sankhwar | Engineering | Global Impact in Research Award

Mr. Pravin Sankhwar | Engineering | Global Impact in Research Award

Electrical Engineer at Independent Scholar, India

Pravin Sankhwar, P.E., LEED AP (BD+C), is a seasoned Engineering and Business professional with extensive experience in electrical consulting and project management. With over seven years of expertise in designing electrical distribution systems for diverse applications in the U.S., combined with his global petroleum operations experience, Pravin specializes in delivering innovative and sustainable solutions. Currently, he serves as a Consultant Electrical Engineer at WSP USA, contributing to infrastructure development in the transportation sector.

Education🎓

Pravin holds a Ph.D. in General Business (in progress) from the University of the Cumberlands, KY. He earned his M.S. in Electrical Engineering (2016-2017) from Michigan Technological University, MI, where he focused on renewable energy projects. His foundational education was completed with a B.S. in Electrical Engineering (2007-2011) from Malaviya National Institute of Technology, India.

Professional Experience💼

Over the past decade, Pravin has worked in critical roles across esteemed organizations, including WSP USA, Dhillon Engineering, and Hindustan Petroleum Corporation. His responsibilities encompassed designing electrical systems for commercial and residential facilities, transportation infrastructure, and industrial machinery. Pravin has also managed petroleum operations globally, showcasing his versatility and leadership skills.

Research Interests🔬

Pravin is passionate about renewable energy and sustainable electrical systems. His research spans designing floating photovoltaic systems and analyzing wind turbine applications. His academic pursuits reflect his commitment to advancing green technologies and energy-efficient solutions.

Awards and Certifications🏆

Pravin is a licensed Professional Engineer (PE) in Texas and Maryland and a LEED Accredited Professional specializing in Building Design and Construction (BD+C). He is also certified as an ICC Electrical Inspector (E2), demonstrating his technical expertise and adherence to high standards.

Publications📝

Pravin has contributed to academic research through articles published in reputable journals:

Application of Permanent Magnet Synchronous Motor for Electric Vehicle

  • Year: 2024
  • Citations: 4

Future of Gasoline Stations

  • Year: 2024
  • Citations: 2

Energy Reduction in Residential Housing Units

  • Year: 2024
  • Citations: 2

Evaluation of Transition to 100% Electric Vehicles (EVs) by 2052 in the United States

  • Year: 2024
  • Citations: 1

Capital Budgeting for Electrical Engineering Projects: A Practical Methodology

  • Year: 2024

Integration of Energy Management Systems with Smart Grid

  • Year: 2024

Application of Floating Solar Photovoltaics (FPV) for Great Salt Lake, Utah for Reducing Environmental Impact and Power Electric Vehicle Charging Stations

  • Year: 2024

Optimal Selection of Overhead vs Underground Transmission Lines to Mitigate Energy Losses

  • Year: 2024

Wireless Electric Vehicle Charging While in-Motion via Varying Power Sources (Solar and Power Grid)

  • Year: 2024

Conversion of Streetlights to Light-emitting Diode (LED) Type

  • Year: 2024

Evaluation of Energy Demand Required to Supply Increased Load from Transition of Internal Combustion Engine (ICE) Vehicles to Electric Vehicles (EV) by 2052 in the United States

  • Year: 2024

Conclusion🌟

Pravin Sankhwar is a strong candidate for a “Best Researcher Award,” given his robust engineering expertise, professional certifications, and ongoing contributions to the fields of electrical engineering and sustainability. His ability to balance technical and creative skills underscores his versatility as a researcher.

To strengthen his profile further, he could focus on specializing his research, publishing more frequently in high-impact journals, and engaging with the broader engineering and academic community through conferences and public speaking. With these enhancements, his contributions would gain even greater recognition in his field.