Yuanyuan Xu | Engineering | Best Researcher Award

Prof. Yuanyuan Xu | Engineering | Best Researcher Award

Prof. Yuanyuan Xu | Engineering – Guangdong Ocean University, China

Professor Xu Yuanyuan is an accomplished Chinese electrical engineering scholar, currently serving at Guangdong Ocean University. Born in July 1988 in Suixian, Henan Province, she has cultivated a strong academic and professional career focused on superconducting motor technologies, offshore wind energy systems, and ship propulsion innovations. With deep roots in both theoretical research and practical application, she has become a rising figure in the marine electrical systems and renewable energy community. Her interdisciplinary contributions and leadership in several national and provincial research projects affirm her as a deserving candidate for the Best Researcher Award.

Profile Verified:

ORCID

Education:

Professor Xu’s academic journey demonstrates a global and interdisciplinary outlook. She earned her undergraduate degree in Automation from Henan University of Science and Technology in 2010. Pursuing further expertise, she enrolled in a joint Master’s and Doctoral program at Southwest Jiaotong University in Vehicle Operation Engineering, graduating in 2015. During the same period, she earned a PhD in Electronics and Electrical Engineering from Tokyo University of Marine Science and Technology under the supervision of Professor Izumi Mitsuru. This dual academic training provided her with a robust foundation in motor design, marine propulsion systems, and advanced superconductivity applications.

Experience:

Xu Yuanyuan began her postdoctoral and early faculty career at Guangdong Ocean University in 2015. Rapidly progressing through the academic ranks, she was appointed Associate Professor in 2017 and promoted to full Professor in 2024. Her long-standing research focus has included motor parameter optimization, energy-efficient marine electrical systems, and fault diagnosis for hybrid ship propulsion. She has also actively mentored student innovation projects and contributed to several national-level research initiatives, reflecting her deep commitment to academic excellence and applied engineering development.

Research Interests:

Professor Xu’s research interests span several forward-looking areas of marine engineering and applied superconductivity. Her core focus lies in:

  • Ship control system monitoring and performance optimization

  • Motor design and optimization for marine applications

  • Control strategies for ship hybrid electric propulsion systems

  • Intelligent control of ship operations

Her interdisciplinary research merges computational modeling, system simulations, and experimental validations—enabling her to advance the practical performance of next-generation ship propulsion technologies.

Awards:

Professor Xu has been honored with several prestigious accolades recognizing her academic and pedagogical contributions. Notably, she received the China Navigation Society Young Talents Support Engineering Talents Award (2022) and the Teaching Master Award from Guangdong Ocean University (2023). She also received the Excellence in Teaching Quality Award during the COVID-19 pandemic and was recognized for her online hybrid teaching module “Basics of Marine Automation” (2020). Additionally, she received guidance awards for undergraduate thesis excellence and was instrumental in securing a Bronze Award at the 8th China International Internet+ Competition in 2022.

Publications:

  1. 🛳️ A Saturation Adaptive Nonlinear Integral Sliding Mode Controller for Ship Permanent Magnet Propulsion Motors, Journal of Marine Science and Engineering, 2025 – Cited by 6.
  2. ⚙️ Non-Singular Fast Terminal Composite Sliding Mode Control of Marine Permanent Magnet Synchronous Propulsion Motors, Machines, 2025 – Cited by 5.
  3. 🌪️ Characteristic Research and Structural Optimization of Coreless Superconducting Linear Traction Motor, Micromotors, 2024 – Cited by 7.
  4. 🌀 Multi-objective Optimization of Superconducting Linear Motor Considering Racetrack Coils, IEEE TASC, 2024 – Cited by 9.
  5. 🌊 Optimization Study of the Main Parameters of Wind Turbine Generators, Superconductor Science and Technology, 2022 – Cited by 11.
  6. ⚡ Study on Electrical Design of Large-Capacity Fully Superconducting Offshore Wind Turbine Generators, IEEE TASC, 2021 – Cited by 15.
  7. 🌍 Electrical Design and Structure Optimization of 10 MW Superconducting Wind Turbine Generators, Physica C, 2020 – Cited by 17.

Conclusion:

Professor Xu Yuanyuan stands at the forefront of research in marine propulsion, wind energy systems, and superconducting motor technologies. Through her strategic leadership in multi-institutional projects, mentorship of emerging researchers, and commitment to academic excellence, she has significantly advanced the frontiers of electrical engineering in marine contexts. Her globally recognized research, practical innovations, and dedication to student success render her an outstanding candidate for the Best Researcher Award. Her work not only contributes to scholarly literature but also drives forward the transition toward intelligent and sustainable marine energy systems.

 

 

 

Chang He | Composite structures | Best Researcher Award

Mr. Chang He | Composite structures | Best Researcher Award 

PHD student at Tongji University, China

Chang He is a dedicated Ph.D. student in Civil Engineering at Tongji University, Shanghai, where he has distinguished himself through exemplary academic performance and significant contributions to research. With a strong foundation in Civil and Hydraulic Engineering, he has garnered recognition for his innovative approach to integrating smart materials with traditional construction techniques. His commitment to advancing the field of civil engineering is evident in his participation in various high-impact research projects and his proactive engagement in scholarly activities.

Profile

ORCID

Education

Chang He began his academic journey at Shenyang Jianzhu University, where he earned his Bachelor’s degree in Civil Engineering with a commendable GPA of 87.6/100. He was recognized for his academic excellence through several awards, including the Merit Student Award and multiple scholarships. Pursuing further education, he obtained his Master’s degree in Civil and Hydraulic Engineering from Tongji University, achieving a GPA of 84.5/100. Currently, he is advancing his studies as a Ph.D. student in Civil Engineering, where he maintains an impressive GPA of 89.5/100, demonstrating his commitment to academic rigor and research excellence.

Experience

Chang He’s research experience is extensive and multifaceted. He has actively participated in several prominent research projects, including the NSFC Project focused on the integration of spherical piezoelectric smart materials with concrete, and the development of disaster acquisition robot equipment under the National Key R&D Program of China. His involvement in these projects has allowed him to gain hands-on experience in cutting-edge research methodologies and technologies, particularly in the context of structural health monitoring and disaster management. Additionally, he has contributed to the academic community as a reviewer for notable journals, further enhancing his understanding of current research trends and standards.

Research Interest

Chang He’s research interests lie at the intersection of civil engineering and advanced technology. His primary focus includes the application of machine learning and artificial intelligence to analyze and optimize the performance of construction materials and structures. He is particularly interested in exploring how innovative materials, such as fiber-reinforced polymers, can be integrated into traditional concrete structures to enhance their durability and resilience. By leveraging deep learning techniques, Chang aims to develop predictive models that can inform engineering practices and improve the safety and efficiency of civil engineering projects.

Awards

Throughout his academic career, Chang He has received several awards and honors that reflect his dedication to excellence in education and research. Notably, he was awarded the Social Work Scholarship twice, highlighting his commitment to community engagement and social responsibility. Additionally, he received the Second Prize Scholarship twice during his master’s studies, as well as the Third Prize Scholarship and the Merit Student Award during his undergraduate years. These accolades serve as a testament to his hard work, perseverance, and contributions to the academic community.

Publications

Chang He has authored and co-authored several research publications in esteemed journals, demonstrating his commitment to advancing knowledge in his field. His notable works include:

Deep Learning-Based Analysis of Interface Performance between Brittle Engineering Materials and Composites (Expert Systems with Applications, 2024).

Hyperparameter optimization for interfacial bond strength prediction between fiber-reinforced polymer and concrete (Structures, 2023).

Bayesian optimization for selecting efficient machine learning regressors to determine bond-slip model of FRP-to-concrete interface (Structures, 2022).

Semi-supervised networks integrated with autoencoder and pseudo-labels propagation for structural condition assessment (Measurement, 2023).

Application of Bayesian optimization approach for modelling bond-slip behavior of FRP-to-concrete interface (Proceedings of the 12th International Conference on Structural Health Monitoring of Intelligent Infrastructure, 2023).

An acoustic-homologous deep learning method for FRP concrete interfacial damage evaluation (Proceedings of the 12th International Conference on Structural Health Monitoring of Intelligent Infrastructure, 2023).

Conclusion

In conclusion, Chang He embodies the qualities of an exceptional researcher in civil engineering, combining academic excellence with impactful research contributions. His extensive experience, innovative research interests, and notable achievements position him as a strong candidate for the Best Researcher Award. By continuing to push the boundaries of knowledge in his field, Chang He is poised to make significant contributions to civil engineering and society as a whole. His commitment to excellence and passion for research make him a deserving nominee for this prestigious award.