Prof. Dr. Sudip Basack | Civil Engineering | Distinguished Scientist Award

Prof. Dr. Sudip Basack | Civil Engineering | Distinguished Scientist Award 

Prof. Dr. Sudip Basack, Regent Education and Research Foundation, India

Dr. Sudip Basack is a seasoned academician and civil engineer with over 21 years of extensive teaching, research, and administrative experience in India and abroad. He holds a Ph.D. in Geotechnical Engineering from Jadavpur University, India, and has served in key academic roles including Professor, Principal, and Head of Department at various reputed institutions. Dr. Basack has worked internationally as a Research Academic and Postdoctoral Fellow in Australia, specializing in ground improvement and railway geomechanics. His research interests span geotechnical engineering, water resources, and groundwater hydrology, with numerous publications in peer-reviewed international journals and conferences. A Chartered Engineer and Fellow of several professional bodies, Dr. Basack is known for his dedication to academic excellence, leadership in R&D projects, supervision of postgraduate and doctoral scholars, and commitment to advancing civil engineering education and practice globally. He is currently serving as an Adjunct Professor at the Department of Civil Engineering, Graphic Era Deemed to be University, Dehradun, India.

Professional Profile:

GOOGLE SCHOLAR

ORCID

SCOPUS

Summary of Suitability for Distinguished Scientist Award

Dr. Sudip Basack is highly suitable for the  Distinguished Scientist Award owing to his distinguished academic and research career spanning over 21 years, including international experience in Australia. His impactful contributions to geotechnical engineering—reflected through high-quality publications in top-tier journals, funded research projects, and PhD supervision—demonstrate his leadership in research innovation. Dr. Basack’s work on stone column-reinforced soft soils and pile foundations has gained significant citations and recognition globally. His consistent pursuit of excellence and dedication to advancing civil engineering research make him a strong and deserving candidate for this prestigious

🎓 Educational Background

  • 📅 2000Ph.D. in Engineering (Geotechnical Engineering)
    Jadavpur University, Kolkata, India

  • 📅 1996Master of Civil Engineering (1st Class, Geotechnical Engineering)
    Jadavpur University, Kolkata, India

  • 📅 1994Bachelor of Engineering (1st Class, Civil Engineering)
    Bengal Engineering College (now IIEST Shibpur), University of Calcutta, India

💼 Professional Work Experience

👨‍🏫 Academic Positions – 21+ Years

  • 📍 Adjunct Professor, Graphic Era University, Dehradun
    (Feb 2024 – Present)
    🧪 Teaching & research in Geotechnical & Civil Engineering

  • 🎓 Principal, Elitte College of Engineering, Kolkata
    (Sept 2019 – Jan 2024)
    🏫 College administration and teaching

  • 🏗️ Professor & Head, Dept. of Civil Engineering, Kaziranga University, Assam
    (Jan 2018 – Jan 2019)

  • 🇦🇺 ARC Level-A Research Academic, University of Wollongong, Australia
    (Mar 2014 – Mar 2017)
    Ground improvement, railway geomechanics

  • 🇦🇺 Endeavour Postdoctoral Fellow, Australian Govt. – UOW
    (May 2010 – Nov 2010)

  • 🇦🇺 Visiting Fellow, University of Technology Sydney
    (Nov 2010 – Dec 2010)

  • 🏫 Faculty Member, Bengal Engineering & Science University (Now IIEST Shibpur)
    (2002 – 2014)
    Roles: Lecturer → Assistant Professor → Associate Professor

  • 🏫 Lecturer, ICV Polytechnic, Jhargram
    (Feb 2001 – Aug 2002)

🏗️ Industry Experience – 0.75 Years

  • 👷‍♂️ Project Engineer, Tara International, Kolkata
    (Oct 1999 – Mar 2000)

  • 🏗️ Trainee Structural Engineer, Sristi Consultants, Kolkata
    (Nov 2000 – Feb 2001)

🏆 Achievements & Contributions

  • 📚 Authored high-quality papers in peer-reviewed international journals & conferences

  • 🎓 Supervised numerous M.Tech and Ph.D. students successfully

  • 💼 Completed several Govt.-sponsored R&D projects and industrial consultancy works

  • 🎙️ Delivered invited lectures/seminars at national and international forums

  • 🧪 Engaged in cutting-edge research on:

    • Ground improvement techniques

    • Railway geomechanics

    • Pile-soil interaction

    • Geoenvironmental engineering

🥇 Awards & Honors

  • 🏅 Endeavour Postdoctoral Research Fellowship by the Australian Government

  • 🏅 Multiple national and international recognitions for academic and research excellence

  • 🌍 Recognition across the International Engineering Fraternity

  • 👨‍🏫 Consistent positive feedback from students for teaching effectiveness

Publication Top Notes:

Numerical solution of stone column–improved soft soil considering arching, clogging, and smear effects

CITED:164

Modeling the stone column behavior in soft ground with special emphasis on lateral deformation

CITED:84

Engineering properties of marine clays from the eastern coast of India

CITED:80

Modeling the performance of stone column–reinforced soft ground under static and cyclic loads

CITED:77

Measured and predicted response of pile groups in soft clay subjected to cyclic lateral loading

CITED:66

 

Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering – Civil Engineering at Western Sydney University, Australia

Kazem Javan is an accomplished researcher and PhD student in Civil and Environmental Engineering at Western Sydney University. He is passionate about advancing sustainable infrastructure solutions through innovative engineering approaches that address environmental challenges. His research focuses on developing durable, acid-resistant materials for sewer pipe rehabilitation, emphasizing the use of sustainable, recycled materials to reduce CO₂ emissions. Kazem is also involved in cutting-edge projects related to carbon-absorbing concrete, aiming to contribute to the circular economy. He brings a wealth of experience in environmental engineering, particularly in water management and resource efficiency, which he integrates into his academic work and professional practice.

Profile:

Google Scholar

Education:


Kazem Javan’s educational journey is rooted in Civil and Environmental Engineering. He is currently pursuing his PhD in Civil Engineering at Western Sydney University, with a focus on developing sustainable materials for infrastructure. Before this, Kazem completed a Master’s in Civil Engineering with a specialization in Water Engineering, where his research examined the impacts of climate change on water resources. His academic foundation began with a Bachelor’s in Civil Engineering, which provided him with a strong grasp of structural mechanics, geotechnical engineering, and transportation systems. This comprehensive academic background forms the foundation for his innovative work in sustainable engineering.

Experience:


Kazem Javan has significant experience in both the academic and professional domains of civil and environmental engineering. He currently works as an Environmental and Civil Engineering Manager, where he leads projects focusing on sustainable infrastructure development and low-emission technologies. In this role, he ensures compliance with environmental regulations and integrates renewable resource utilization in engineering practices. Previously, Kazem was a Technical Supervisor at Ideh Afroz Aria Company, where he supervised water infrastructure projects and integrated climate resilience strategies. His broad experience allows him to combine theoretical knowledge with practical solutions in real-world applications, enhancing both the sustainability and efficiency of civil engineering projects.

Research Interests:

Kazem’s research interests are centered around sustainable engineering solutions, focusing on the development of materials and systems that contribute to environmental preservation and climate change mitigation. His current research explores the use of recycled materials, such as broken glass and mine by-products, for sewer pipe rehabilitation and the creation of durable, acid-resistant coatings. Kazem is also dedicated to advancing carbon-absorbing concrete technologies and is actively involved in the CRC SmartCrete project, where he explores the potential of waste minerals to enhance sustainability in construction. His work in environmental engineering spans areas such as water resource management, renewable energy, waste management, and the water-energy-food nexus, all aimed at reducing environmental impact.

Awards:


Kazem Javan has been recognized for his exceptional academic and professional achievements. He was awarded the SmartCrete CRC and Western Sydney University Postgraduate Research Scholarship, which supports his ongoing research into sustainable infrastructure and material innovations. This award highlights Kazem’s commitment to advancing sustainability in the engineering field, particularly through the development of eco-friendly solutions that can have a lasting impact on construction practices and environmental protection. His ability to combine technical expertise with a strong focus on sustainability has earned him the recognition he deserves.

Publications:


Kazem has contributed significantly to the academic community, publishing several impactful papers in prestigious journals. His work addresses critical issues in water resource management, environmental sustainability, and the effects of climate change on infrastructure. Below are some of his notable publications:

  1. Javan, K., Banihashemi, S., Nazari, A., et al. (2025). Coupled SWMM-MOEA/D for Multi-Objective Optimization of Low Impact Development in Urban Stormwater Systems. Journal of Hydrology 🌍 (Cited by: 12)
  2. Javan, K., Darestani, M., Ibrar, I., et al. (2025). Interrelated Issues within the Water-Energy-Food Nexus with a Focus on Environmental Pollution for Sustainable Development: A Review. Environmental Pollution 🌱 (Cited by: 9)
  3. Javan, K., Altaee, A., BaniHashemi, S., et al. (2024). A Review of Interconnected Challenges in the Water–Energy–Food Nexus: Urban Pollution Perspective towards Sustainable Development. Science of the Total Environment 🏙️ (Cited by: 16)
  4. Javan, K., & Darestani, M. (2024). Assessing Environmental Sustainability of a Vital Crop in a Critical Region: Investigating Climate Change Impacts on Agriculture Using the SWAT Model and HWA Method. Heliyon 🌾 (Cited by: 5)
  5. Javan, K., Altaee, A., Darestani, M., et al. (2023). Assessing the Water–Energy–Food Nexus and Resource Sustainability in the Ardabil Plain: A System Dynamics and HWA Approach. Water 💧 (Cited by: 20)
  6. Javan, K., Mirabi, M., Hamidi, S. A., et al. (2023). Enhancing Environmental Sustainability in a Critical Region: Climate Change Impacts on Agriculture and Tourism. Civil Engineering Journal 🏗️ (Cited by: 3)
  7. Javan, K., Lialestani, M. R. F. H., Ashouri, H., & Moosavian, N. (2015). Assessment of the Impacts of Nonstationarity on Watershed Runoff Using Artificial Neural Networks: A Case Study in Ardebil, Iran. Modeling Earth Systems and Environment 🌍 (Cited by: 8)

Conclusion:


Kazem Javan is an outstanding candidate for the “Best Researcher Award,” thanks to his groundbreaking work in sustainable engineering, water management, and climate change mitigation. His dedication to creating environmentally friendly materials and improving construction practices positions him as a leader in his field. With a strong academic background, extensive professional experience, and a proven track record of impactful research, Kazem continues to make significant contributions to the engineering community. His work not only addresses pressing global environmental issues but also sets the stage for a more sustainable future in civil and environmental engineering. His commitment to integrating innovative solutions into practice makes him highly deserving of this prestigious recognition.

Mostafa Hosseinzadeh | Engineering | Best Researcher Award

Mr. Mostafa Hosseinzadeh | Engineering | Best Researcher Award

PhD student | University of Cape Town | South Africa

Mostafa Hosseinzadeh is currently a PhD candidate in Hydrometallurgy at the University of Cape Town (UCT), South Africa. His research focuses on the recovery of Platinum Group Metals (PGMs) from spent automotive catalyst leach solutions using ion exchange. Hosseinzadeh has a solid academic background, with an M.Sc. in Mineral Processing Engineering from the University of Shahid Bahonar in Kerman, Iran, and a B.Sc. in Mining Engineering from Sahand University of Technology, Tabriz, Iran. His career has been distinguished by a range of roles in both academia and industry, including research assistantships, management of R&D units in copper production, and significant contributions to the development of hydrometallurgical processes.

Profile

Scholar

Education
Hosseinzadeh’s academic journey includes a Ph.D. in Hydrometallurgy from the University of Cape Town, where he has been enrolled since 2021, specializing in the recovery of PGMs. Before this, he completed an M.Sc. in Mineral Processing Engineering at the University of Shahid Bahonar, Iran, focusing on the extraction of rhenium. He also holds a B.Sc. in Mining Engineering from Sahand University of Technology, where he worked on the environmental impact of tailing dams. His education reflects a strong foundation in engineering principles, with a focus on mineral processing, hydrometallurgy, and environmental considerations in mining operations.

Experience
Hosseinzadeh’s professional experience spans research and development, industrial applications, and academic roles. He has worked as a visiting researcher at the University of Liège, Belgium, and as a manager for the R&D unit at Zagros Mes Sazan Company in Iran, where he led efforts to optimize copper extraction methods and improve efficiency in copper cathode production. His work as a senior mineral processing engineer at Sormak Mining Company and as a process engineer at Sabanour Mining and Industrial Development Company provided him with extensive hands-on experience in mineral processing operations. Furthermore, he has been involved in the development and optimization of solvent extraction and electrowinning processes for various metals, contributing significantly to the advancement of industrial hydrometallurgy.

Research Interests
Hosseinzadeh’s research interests include the extraction of valuable metals through hydrometallurgical processes such as leaching, solvent extraction, ion exchange, and electrowinning. He is particularly focused on the separation and purification of metal ions from both primary and secondary leach solutions, including spent automotive catalysts and mining waste. His research on separators for hydrometallurgical operations and process optimization contributes to both the theoretical and practical aspects of hydrometallurgy. Through his work, Hosseinzadeh aims to enhance the efficiency and sustainability of mineral processing, particularly in the extraction of precious and base metals.

Awards
Hosseinzadeh has earned recognition for his academic and professional achievements. Notably, he received the second prize at the 2024 International Conference on New Energy and Hydrometallurgy in China for his outstanding paper. He was also awarded the prestigious International and Refugee Student’s Scholarship at the University of Cape Town in 2023. His doctoral studies were supported by the Hydrometallurgy Research Group Scholarship, emphasizing his contributions to the field. Additionally, his academic excellence earned him a top rank in Iran’s national university entrance exams, highlighting his longstanding commitment to education and research.

Publications
Hosseinzadeh has published several impactful papers, with a focus on the recovery of metals using hydrometallurgical methods. Some of his notable publications include:

  1. Hosseinzadeh, M., & Petersen, J. (2025). “Platinum(IV), Palladium(II), and Rhodium(III) Recovery from Mixed Acidic Chloride Solutions Using Chelating Ion Exchange Resin Puromet MTS9600,” Solvent Extraction and Ion Exchange.
  2. Hosseinzadeh, M., & Petersen, J. (2024). “Recovery of Pt, Pd, and Rh from spent automotive catalysts through combined chloride leaching and ion exchange: A review,” Hydrometallurgy.
  3. Hosseinzadeh, M., & Petersen, J. (2024). “Efficient rhenium recovery from molybdenite roasting dust leach solution using tributyl phosphate solvent extraction,” Hydrometallurgy for the Future Conference, South African Institute of Mining and Metallurgy.
  4. Hosseinzadeh, M., Azizi, A., & Hassanzadeh, A. (2022). “Solvent extraction and kinetic studies of copper from a heap leach liquor using CuPRO MEX-3302,” Separation Science and Technology, 57(4), 571-588.
  5. Hosseinzadeh, M., et al. (2021). “A kinetic investigation on leaching of copper from a low-grade copper oxide deposit in sulfuric acid solution,” Journal of Sustainable Metallurgy, 7, 1154-1168.
    His works are widely cited in the field of hydrometallurgy, contributing to both theoretical knowledge and practical applications in metal recovery.

Conclusion
Mostafa Hosseinzadeh is an emerging leader in the field of hydrometallurgy, with a strong academic background and professional experience that bridges both research and industrial applications. His work, which focuses on the recovery of precious metals from industrial waste and spent catalysts, aligns with global efforts toward more sustainable and efficient mineral processing. With a career marked by academic excellence, significant research contributions, and recognition from prestigious institutions, Hosseinzadeh continues to make strides in hydrometallurgical processes, particularly in the extraction of precious and base metals. His interdisciplinary approach and commitment to sustainability position him as a valuable contributor to the future of mining and metallurgy.

Habib Ghasemi Jouneghani | Engineering | Best Researcher Award

Dr. Habib Ghasemi Jouneghani | Engineering | Best Researcher Award

Researcher | Department of Civil Engineering, Shahid Rajaee Teacher Training University | Iran

Habib Ghasemi Jouneghani is a distinguished structural engineer specializing in earthquake engineering, structural dynamics, and seismic design. With an academic background that includes a Ph.D. in Structural Engineering from Shahid Rajaee Teacher Training University and an M.Sc. in Earthquake Engineering, Ghasemi has made significant contributions to the field of structural resilience and seismic performance. His work is particularly notable for innovations in the design and analysis of steel moment frames, equipped with elliptical braces, which have garnered attention in both academic and practical engineering circles. Ghasemi has combined his academic prowess with extensive industry experience, having worked in various roles such as designer, controller, and retrofitting specialist across multiple engineering companies.

Profile

Scopus

Education

Ghasemi completed his Ph.D. in Structural Engineering at Shahid Rajaee Teacher Training University (2019), where his thesis focused on the seismic performance of steel moment frames with elliptic bracing. This work earned him a remarkable grade of 19.72/20. He obtained his M.Sc. in Earthquake Engineering from Islamic Azad University of Shahrekord (2011), where he conducted an in-depth study on seismic risk analysis for Hamadan City, receiving high marks for his thesis. His academic journey started with a B.Sc. in Civil Engineering from Islamic Azad University of Najafabad in 2008, where he graduated with distinction. Ghasemi’s education reflects his deep commitment to understanding and addressing structural vulnerabilities in earthquake-prone areas.

Experience

Ghasemi’s professional experience spans both academia and industry. From 2009 to 2013, he worked as a structural designer at Alborz Novin Shiraz Mehregan Engineering Company. He later contributed to several other engineering companies, including Dejkooh, Kia-Sazeh Mahan, and Parsian Sanat Pardis Arvin, where he held various roles such as designer, retrofitting designer, and technical office observer. His industry work included high-profile projects like the design of steel structures for Nasr oil platform in the Persian Gulf and oil tank strengthening at the Siri and Kharg Islands oil terminals. Additionally, Ghasemi has been involved in teaching at various universities and as a tutor in the fields of mathematics, physics, and structural engineering. He is also an honorary research contractor with the University of Technology Sydney since 2021.

Research Interests

Ghasemi’s research spans several key areas in engineering and physics, particularly focusing on structural and earthquake engineering. His research interests include the design of steel and composite structures, seismic performance evaluation, structural health monitoring, and the use of smart materials in construction. Furthermore, he explores the seismic behavior of elliptic-braced steel frames through experimental and analytical methods, contributing new insights into performance-based seismic design. His work is also deeply rooted in astrophysics, where he investigates galaxies, black holes, and meteor physics, showcasing his versatile intellectual curiosity across multiple disciplines.

Awards

Ghasemi has been recognized for his academic and professional achievements. He was honored as a preferred graduate of his Ph.D. program in Structural Engineering at Shahid Rajaee Teacher Training University in 2019 and for his M.Sc. at Shahrekord University. In 2009, he ranked third among over 20,000 participants in the M.Sc. entrance examination for Earthquake Engineering. Furthermore, his early academic excellence saw him placed among the top 2% in Iran’s national university entrance exam for Mathematics and Physics in 2004. These accolades highlight his dedication to academic excellence and technical prowess.

Publications

Ghasemi has authored several influential publications in high-impact journals, contributing to advancements in seismic engineering and structural dynamics. His notable publications include:

  1. Ghasemi Jouneghani, H., Ghodrati Amiri, G.R., Razavian Amrei, S.A., “Probabilistic Assessment of PGA and UHS for Ancient City Hamadan, Iran”, International Journal of Earth Sciences and Engineering, 2013.
  2. Ghasemi Jouneghani, H., Haghollahi, A., Moghadam, H., Sarvghad Moghaddam, A.R., “Study of the Seismic Performance of Steel Frames in Elliptic Bracing”, Journal of Vibroengineering, 2016.
  3. Ghasemi Jouneghani, H., Haghollahi, A., Moghadam, H., Sarvghad Moghaddam, A.R., “Seismic Performance of Elliptic Braced Moment Resisting Frame Through Pushover Method”, Journal of Rehabilitation in Civil Engineering, 2019.
  4. Ghasemi Jouneghani, H., Haghollahi, A., “Assessing the Seismic Behavior of Steel Moment Frames with Elliptical Brace”, Journal of Earthquake Engineering and Engineering Vibration, 2020.
  5. Ghasemi Jouneghani, H., Haghollahi, A., “Experimental Study on Hysteretic Behavior of Steel Moment Frames with Elliptical Brace”, Journal of Steel and Composite Structures, 2020.
  6. Ghasemi Jouneghani, H., Haghollahi, A., “Seismic Performance of Lateral Bracing System ‘ELBRF’”, Journal of Advanced Steel Structures, 2020.
  7. Ghasemi Jouneghani, H., Nouri, Y., Haghollahi, A., “Seismic Performance Evaluation of Mega Elliptic-Braced Resisting Frames”, Journal of Structures, 2024.

His research contributions have garnered attention and citations, underscoring the significance of his work in advancing structural resilience in seismic regions.

Conclusion

In conclusion, Habib Ghasemi Jouneghani has established himself as a leading figure in the field of structural engineering, particularly in the design and analysis of seismic-resistant structures. His extensive academic qualifications, groundbreaking research, and significant industry experience position him as a leading expert in his field. His commitment to developing innovative structural systems, such as elliptic bracing for steel frames, and his contributions to improving seismic performance have made a lasting impact on both academic research and practical engineering applications. Ghasemi’s ongoing work in structural health monitoring and smart materials ensures his continued influence on the evolution of resilient building designs for earthquake-prone regions.

Licheng Zhang | Fuel Consumption | Best Researcher Award

Dr. Licheng Zhang | Fuel Consumption | Best Researcher Award

Senior Engineer at Chang’an University, China.

Dr. Zhang Licheng is a Senior Engineer at Chang’an University, specializing in traffic  engineering and control. He has a profound interest in sustainable driving behavior, fuel consumption modeling, and autonomous vehicle efficiency. With 33 publications and 10 patents to his name, his pioneering work in fuel consumption prediction models has advanced the understanding of vehicular dynamics. Dr. Zhang’s research integrates advanced technologies and data analytics to promote eco-driving and intelligent vehicle systems, making significant contributions to green transportation. He is a recognized thought leader in the domain, blending academic rigor with practical applications to impact the automotive industry globally.

Profile Verification

Scopus 

Education

Dr. Zhang Licheng completed his undergraduate studies in Computer Science and Technology, followed by a master’s and doctoral degree in Traffic Engineering and Control. His advanced education laid the foundation for his research on driving behavior and energy consumption models. At Chang’an University, his academic training focused on creating innovative methodologies to optimize driving efficiency and fuel usage. His educational journey reflects his passion for merging technology with transportation, empowering him to solve critical challenges in intelligent vehicle systems and autonomous driving scenarios.

Experience

Dr. Zhang brings over a decade of experience in automotive engineering and intelligent vehicle research. As a Senior Engineer at Chang’an University, he has led numerous projects funded by prominent organizations, including the National Natural Science Foundation of China. His work emphasizes fuel-efficient driving strategies, autonomous vehicle simulations, and hybrid data modeling for energy optimization. Dr. Zhang has collaborated with global institutions, contributed to 33 journal publications, and mentored young researchers, shaping the future of green transportation technologies.

Research Interests

Dr. Zhang’s research explores energy-efficient driving behavior, integrating multi-source traffic data for ecological vehicle systems. He specializes in developing fuel consumption prediction models, autonomous driving strategies, and motion planning methods for lane-changing scenarios. His studies bridge the gap between driving behavior and environmental sustainability, contributing significantly to the design of energy-efficient autonomous vehicles. Dr. Zhang’s work also addresses real-world applications of digital twin testing and simulation for automated driving technologies.

Awards and Honors

Dr. Zhang Licheng has been honored with the Young Scientist Award, Best Innovation Award, and Excellence in Research Award for his contributions to automotive and traffic engineering. His achievements include receiving grants for prestigious national and provincial projects, along with patents for innovative solutions in eco-driving and autonomous vehicle planning. His exceptional work has been recognized at global conferences, highlighting his commitment to advancing intelligent vehicle systems.

Publications

Ma, S., Chen, C., Zhang, L., Zhang, J., Zhao, X.
Title: AMTrack: Transformer tracking via action information and mix-frequency features
Journal: Expert Systems with Applications
Year: 2025
Citations: 0

Zhang, L., Ya, J., Khattak, A.J., Peng, K., Guo, Y.
Title: Novel fuel consumption models integrating vehicular speed, acceleration, and jerk
Journal: Journal of Intelligent Transportation Systems: Technology, Planning, and Operations
Year: 2024
Citations: 0

Ma, S., Zhao, B., Zhang, L., Hou, Z., Zhao, X.
Title: Correlation Filter based on Trajectory Correction and Context Interference Suppression for Real-Time UAV Tracking
Journal: IEEE Transactions on Intelligent Vehicles
Year: 2024
Citations: 2

Zhang, L., Ya, J., Xu, Z., Xing, Y., Yang, R.
Title: Novel Neural-Network-Based Fuel Consumption Prediction Models Considering Vehicular Jerk
Journal: Electronics (Switzerland)
Year: 2023
Volume: 12
Issue: 17
Citations: 0

Wang, G., Zhang, L., Xu, Z., Qu, X.
Title: Predictability of Vehicle Fuel Consumption Using LSTM: Findings from Field Experiments
Journal: Journal of Transportation Engineering Part A: Systems
Year: 2023
Volume: 149
Issue: 5
Citations: 4

Peng, K., Xing, Y., Zhang, L., Song, Y., Ya, J.
Title: Quantitative Evaluation of Energy-saving Driving Based on Wavelet Transform
Conference: 7th IEEE International Conference on Transportation Information and Safety, ICTIS 2023
Year: 2023
Citations: 0

Zhang, L., Peng, K., Zhao, X., Khattak, A.J.
Title: New fuel consumption model considering vehicular speed, acceleration, and jerk
Journal: Journal of Intelligent Transportation Systems: Technology, Planning, and Operations
Year: 2023
Volume: 27
Citations: 12

Zhang, L., Zhang, T., Peng, K., Zhao, X., Xu, Z.
Title: Can Autonomous Vehicles Save Fuel? Findings from Field Experiments
Journal: Journal of Advanced Transportation
Year: 2022
Citations: 9

Wang, G., Zhang, L., Xu, Z., Wei, T., Qu, X.
Title: FuelNet: A precise fuel consumption prediction model using long short-term memory deep network for eco-driving
Conference: Energy Proceedings
Year: 2020
Citations: 0

Min, H., Zhao, X., Xu, Z., Zhang, L., Wang, R.
Title: Stereo Visual Odometry Based on Robust Features
Journal: Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University
Year: 2017
Citations: 2

Conclusion

Zhang Licheng is a strong candidate for the Best Researcher Award, owing to his innovative contributions to traffic engineering, eco-driving, and energy-efficient vehicular technologies. His well-rounded portfolio of research projects, patents, and publications underscores his dedication to advancing his field. While there is room for growth in global recognition and citation impact, Zhang’s accomplishments make him an exemplary researcher deserving of this prestigious award.

 

Pravin Sankhwar | Engineering | Global Impact in Research Award

Mr. Pravin Sankhwar | Engineering | Global Impact in Research Award

Electrical Engineer at Independent Scholar, India

Pravin Sankhwar, P.E., LEED AP (BD+C), is a seasoned Engineering and Business professional with extensive experience in electrical consulting and project management. With over seven years of expertise in designing electrical distribution systems for diverse applications in the U.S., combined with his global petroleum operations experience, Pravin specializes in delivering innovative and sustainable solutions. Currently, he serves as a Consultant Electrical Engineer at WSP USA, contributing to infrastructure development in the transportation sector.

Education🎓

Pravin holds a Ph.D. in General Business (in progress) from the University of the Cumberlands, KY. He earned his M.S. in Electrical Engineering (2016-2017) from Michigan Technological University, MI, where he focused on renewable energy projects. His foundational education was completed with a B.S. in Electrical Engineering (2007-2011) from Malaviya National Institute of Technology, India.

Professional Experience💼

Over the past decade, Pravin has worked in critical roles across esteemed organizations, including WSP USA, Dhillon Engineering, and Hindustan Petroleum Corporation. His responsibilities encompassed designing electrical systems for commercial and residential facilities, transportation infrastructure, and industrial machinery. Pravin has also managed petroleum operations globally, showcasing his versatility and leadership skills.

Research Interests🔬

Pravin is passionate about renewable energy and sustainable electrical systems. His research spans designing floating photovoltaic systems and analyzing wind turbine applications. His academic pursuits reflect his commitment to advancing green technologies and energy-efficient solutions.

Awards and Certifications🏆

Pravin is a licensed Professional Engineer (PE) in Texas and Maryland and a LEED Accredited Professional specializing in Building Design and Construction (BD+C). He is also certified as an ICC Electrical Inspector (E2), demonstrating his technical expertise and adherence to high standards.

Publications📝

Pravin has contributed to academic research through articles published in reputable journals:

Application of Permanent Magnet Synchronous Motor for Electric Vehicle

  • Year: 2024
  • Citations: 4

Future of Gasoline Stations

  • Year: 2024
  • Citations: 2

Energy Reduction in Residential Housing Units

  • Year: 2024
  • Citations: 2

Evaluation of Transition to 100% Electric Vehicles (EVs) by 2052 in the United States

  • Year: 2024
  • Citations: 1

Capital Budgeting for Electrical Engineering Projects: A Practical Methodology

  • Year: 2024

Integration of Energy Management Systems with Smart Grid

  • Year: 2024

Application of Floating Solar Photovoltaics (FPV) for Great Salt Lake, Utah for Reducing Environmental Impact and Power Electric Vehicle Charging Stations

  • Year: 2024

Optimal Selection of Overhead vs Underground Transmission Lines to Mitigate Energy Losses

  • Year: 2024

Wireless Electric Vehicle Charging While in-Motion via Varying Power Sources (Solar and Power Grid)

  • Year: 2024

Conversion of Streetlights to Light-emitting Diode (LED) Type

  • Year: 2024

Evaluation of Energy Demand Required to Supply Increased Load from Transition of Internal Combustion Engine (ICE) Vehicles to Electric Vehicles (EV) by 2052 in the United States

  • Year: 2024

Conclusion🌟

Pravin Sankhwar is a strong candidate for a “Best Researcher Award,” given his robust engineering expertise, professional certifications, and ongoing contributions to the fields of electrical engineering and sustainability. His ability to balance technical and creative skills underscores his versatility as a researcher.

To strengthen his profile further, he could focus on specializing his research, publishing more frequently in high-impact journals, and engaging with the broader engineering and academic community through conferences and public speaking. With these enhancements, his contributions would gain even greater recognition in his field.

Charly Julien Nyobe | Wood Mechanics | Best Paper Award

Dr. Charly Julien Nyobe | Wood Mechanics | Best Paper Award

Dr. Charly Julien Nyobe – Teacher-researcher at ENSET of Douala, France

Charly Julien Nyobe is a dedicated researcher, educator, and civil engineer with specialized expertise in wood material science, sustainable construction, and structural mechanics. His work focuses on developing sustainable, eco-friendly construction practices, particularly through the innovative use of tropical woods as viable alternatives to traditional materials. Nyobe’s research addresses the mechanical properties, strength classifications, and resilience of timber from the Congo Basin, contributing significantly to the advancement of sustainable building practices in regions rich in tropical forests. His in-depth studies cover topics such as the impact of scale on wood strength, the effect of grain slope on mechanical properties, and the influence of natural variability in wood species. Nyobe has contributed numerous publications that highlight his findings, focusing on factors like vibratory damping, structural reliability, and wood’s response under varying environmental conditions. His research, widely cited in prominent journals, emphasizes the importance of combining traditional materials with advanced engineering methods to create resilient, environmentally friendly construction solutions. Beyond research, Nyobe is an active educator at the University of Douala, where he mentors students and supervises projects that explore innovative uses of wood in civil engineering. His role as a member of the Groupe De Recherche Science du Bois (GDR) in France further underscores his commitment to promoting sustainable materials in engineering. Through his work in academia, industry, and collaborative research, Nyobe has established himself as a leader in sustainable civil engineering, demonstrating that tropical wood, when combined with modern engineering approaches, can serve as a durable, high-performance construction material. His contributions continue to drive awareness of the potential of sustainable materials in civil engineering, inspiring new research and practical applications that align with environmental stewardship and sustainable development goals.

Profile Verification

Google Scholar

Education

Charly Nyobe’s academic journey is marked by a series of high achievements and specialization in civil engineering. He is currently pursuing a PhD in Mechanics at the Université Gustave Eiffel in France, focusing on the development of sustainable road restraint systems that incorporate wood materials. His first PhD, earned in 2023 from the École Nationale Supérieure Polytechnique de Yaoundé at the University of Yaoundé I, delved into multi-scale resistance classification of Congo Basin timber, earning him top honors. Nyobe also holds a Master’s in Engineering Science with a specialization in Civil Engineering from the University of Douala, where he conducted pioneering work on the mechanical resistance of Congo Basin wood, specifically the Okan species. His academic foundation was further strengthened by his undergraduate studies at the Ecole Normale Supérieure d’Enseignement Technique de Douala, where he focused on corrosion in reinforced concrete structures.

Professional Experience

Nyobe’s professional experience spans over a decade, during which he has taught and mentored students at various educational institutions in Cameroon. Since 2018, he has served as a faculty member in the Civil Engineering department at the Ecole Normale Supérieure d’Enseignement Technique (ENSET), University of Douala. Prior to this, he taught at the Lycée Polyvalent de Bonabéri in Douala, where he developed and implemented curricula designed to improve student understanding of structural engineering and construction technology. Additionally, Nyobe has served as a visiting lecturer at the École Supérieure de La Salle in Douala and the Institute of Technology in Douala, sharing his expertise with aspiring civil engineers. His extensive experience in education has equipped him with the skills to communicate complex engineering concepts effectively and foster an environment conducive to learning and innovation.

Research Interests

Charly Nyobe’s research interests are rooted in civil engineering and sustainability, with a particular focus on wood material science, structural dynamics, and impact mechanics. His ongoing doctoral research explores innovative uses of wood in road restraint systems, with an emphasis on the durability and resilience of timber under mechanical stress. Additionally, Nyobe is deeply invested in the characterization of tropical woods from the Congo Basin, investigating their potential as sustainable alternatives in construction. He employs both experimental and numerical methods to study the dynamic behavior of materials, particularly in applications where mechanical strength and material sustainability intersect. His work not only promotes eco-friendly construction practices but also contributes valuable insights into the mechanics of tropical woods, encouraging the use of indigenous resources in modern engineering.

Awards

Nyobe’s academic excellence and contributions to civil engineering research have earned him significant recognition. His PhD thesis at the École Nationale Supérieure Polytechnique de Yaoundé received the distinction of “Très Honorable” by a unanimous jury, acknowledging his groundbreaking work in the multi-scale classification of Congo Basin timber. He has also received “mention Très Bien” for both his Master’s and undergraduate thesis projects, reflecting his consistent high performance and dedication to quality research. These accolades underscore Nyobe’s commitment to pushing the boundaries of engineering knowledge and highlight his role in advancing sustainable construction methodologies.

Publications

Nyobe, C. J., Nyobe, N. S., Nkibeu, J. B., Oum Lissouck, R., & Ayina Ohandja, L. M. (2024). “Effect of slope of grain on mechanical properties of some tropical wood species.” Wood Material Science & Engineering, 1–7.
Biyo’o, R., Biwole, A. B., Moutou Pitti, R., Nyobe, C. J., et al. (2024). “Mode I cracking of three tropical species from Cameroon.” Wood Material Science & Engineering, 1–10.
Bertin, N., Nyobe, C., et al. (2023). “A Review on Methods for Determining the Vibratory Damping Ratio.” Open Journal of Civil Engineering, 13, 199-209.
Nyobe, C. J., Lissouck, R. O., Ayina Ohandja, L. M., & Emmanuel, Y. (2022). “Variability of the mechanical strength of Congo Basin timbers.” Wood Material Science & Engineering, 17(3), 210–220.

Conclusion

Charly Julien Nyobe’s work in civil engineering and wood material science embodies a commitment to sustainable development and innovation. His research is instrumental in promoting eco-friendly construction practices by exploring the properties of local wood species, with particular attention to their mechanical strength and resilience. Nyobe’s achievements in education, research, and publication reflect a deep understanding of both the theoretical and practical aspects of engineering. His contributions are shaping the field of civil engineering, particularly within regions rich in tropical forests, and underscore the potential of natural resources in addressing modern engineering challenges. As a nominee for the award, Nyobe exemplifies the qualities of a visionary researcher dedicated to sustainable advancements in engineering.

Chang He | Composite structures | Best Researcher Award

Mr. Chang He | Composite structures | Best Researcher Award 

PHD student at Tongji University, China

Chang He is a dedicated Ph.D. student in Civil Engineering at Tongji University, Shanghai, where he has distinguished himself through exemplary academic performance and significant contributions to research. With a strong foundation in Civil and Hydraulic Engineering, he has garnered recognition for his innovative approach to integrating smart materials with traditional construction techniques. His commitment to advancing the field of civil engineering is evident in his participation in various high-impact research projects and his proactive engagement in scholarly activities.

Profile

ORCID

Education

Chang He began his academic journey at Shenyang Jianzhu University, where he earned his Bachelor’s degree in Civil Engineering with a commendable GPA of 87.6/100. He was recognized for his academic excellence through several awards, including the Merit Student Award and multiple scholarships. Pursuing further education, he obtained his Master’s degree in Civil and Hydraulic Engineering from Tongji University, achieving a GPA of 84.5/100. Currently, he is advancing his studies as a Ph.D. student in Civil Engineering, where he maintains an impressive GPA of 89.5/100, demonstrating his commitment to academic rigor and research excellence.

Experience

Chang He’s research experience is extensive and multifaceted. He has actively participated in several prominent research projects, including the NSFC Project focused on the integration of spherical piezoelectric smart materials with concrete, and the development of disaster acquisition robot equipment under the National Key R&D Program of China. His involvement in these projects has allowed him to gain hands-on experience in cutting-edge research methodologies and technologies, particularly in the context of structural health monitoring and disaster management. Additionally, he has contributed to the academic community as a reviewer for notable journals, further enhancing his understanding of current research trends and standards.

Research Interest

Chang He’s research interests lie at the intersection of civil engineering and advanced technology. His primary focus includes the application of machine learning and artificial intelligence to analyze and optimize the performance of construction materials and structures. He is particularly interested in exploring how innovative materials, such as fiber-reinforced polymers, can be integrated into traditional concrete structures to enhance their durability and resilience. By leveraging deep learning techniques, Chang aims to develop predictive models that can inform engineering practices and improve the safety and efficiency of civil engineering projects.

Awards

Throughout his academic career, Chang He has received several awards and honors that reflect his dedication to excellence in education and research. Notably, he was awarded the Social Work Scholarship twice, highlighting his commitment to community engagement and social responsibility. Additionally, he received the Second Prize Scholarship twice during his master’s studies, as well as the Third Prize Scholarship and the Merit Student Award during his undergraduate years. These accolades serve as a testament to his hard work, perseverance, and contributions to the academic community.

Publications

Chang He has authored and co-authored several research publications in esteemed journals, demonstrating his commitment to advancing knowledge in his field. His notable works include:

Deep Learning-Based Analysis of Interface Performance between Brittle Engineering Materials and Composites (Expert Systems with Applications, 2024).

Hyperparameter optimization for interfacial bond strength prediction between fiber-reinforced polymer and concrete (Structures, 2023).

Bayesian optimization for selecting efficient machine learning regressors to determine bond-slip model of FRP-to-concrete interface (Structures, 2022).

Semi-supervised networks integrated with autoencoder and pseudo-labels propagation for structural condition assessment (Measurement, 2023).

Application of Bayesian optimization approach for modelling bond-slip behavior of FRP-to-concrete interface (Proceedings of the 12th International Conference on Structural Health Monitoring of Intelligent Infrastructure, 2023).

An acoustic-homologous deep learning method for FRP concrete interfacial damage evaluation (Proceedings of the 12th International Conference on Structural Health Monitoring of Intelligent Infrastructure, 2023).

Conclusion

In conclusion, Chang He embodies the qualities of an exceptional researcher in civil engineering, combining academic excellence with impactful research contributions. His extensive experience, innovative research interests, and notable achievements position him as a strong candidate for the Best Researcher Award. By continuing to push the boundaries of knowledge in his field, Chang He is poised to make significant contributions to civil engineering and society as a whole. His commitment to excellence and passion for research make him a deserving nominee for this prestigious award.

Ahmed Ibrahim | Electrical Engineering | Best Researcher Award

Mr . Ahmed Ibrahim | Electrical Engineering | Best Researcher Award 

Graduate Research Assistant , Florida International University , United States

Ahmed Mosaad Abdelfattah Ibrahim is an accomplished electrical engineer with over eight years of experience in both industry and academia. He holds a BSc and an MSc with honors from Mansoura University, where he also served as an assistant lecturer and academic researcher. Currently, he is a Graduate Research Assistant pursuing a PhD in Electrical Engineering at Florida International University (FIU). Ahmed’s expertise spans electrification of transportation, microgrids, and renewable energy systems. He has received prestigious scholarships, including Erasmus and USAID, for his academic contributions and research excellence.

Profile

Google Scholar

Education 🎓

  • PhD in Electrical Engineering (January 2024 – Present): Pursuing a doctorate at Florida International University, focusing on energy systems research, specifically in controlling multi-port converters for microgrids and wireless power transfer systems.
  • MSc in Electrical Engineering (April 2018 – April 2021): Mansoura University, Egypt. His research explored wireless power transfer for electric vehicle charging.
  • BSc in Electrical Engineering (September 2011 – June 2016): Graduated with honors from Mansoura University, Egypt, with a thesis on smart grid load management.
  • High School: Graduated with a GPA of 3.92/4, ranking first in both school and state.

Experience 💼

  • Graduate Research Assistant, FIU, Miami, FL (January 2024 – Present): Working on power routing in microgrids and optimized energy transfer systems. Engages in writing journal papers and proposals in electrification and microgrid research.
  • Assistant Lecturer, Mansoura University, Egypt (August 2018 – December 2023): Taught various electrical engineering courses and conducted research on power systems.
  • Scientist Engineer (Volunteer), Electro Green, Canada (December 2022 – December 2023): Led R&D for Electric Mobility systems, developed prototypes, and collaborated with industry partners.
  • Electrical Site Engineer, GS E&C, Cairo, Egypt (December 2017 – November 2018): Managed construction supervision, commissioning, and maintenance of electrical systems in a major industrial project.

Research Interests 🔬

Ahmed’s research focuses on:

  1. Transportation Electrification
  2. Wireless Power Transfer Systems
  3. Hybrid Microgrid Control and Stability
  4. Magnetic Energy Routers
  5. Renewable Energy Systems
  6. Battery Management Systems

Awards 🏆

  • USAID Scholarship, Arizona State University, USA (2023): For research on enhancing the resilience and stability of microgrids.
  • Erasmus Scholarship, Hellenic Mediterranean University, Greece (2022): For research on wind energy and load management.
  • Erasmus Scholarship, University of Central Lancashire, UK (2020): For designing a control system for wireless electric vehicle charging.

Publications 📚

  • “Analysis of Inductive Characteristics for various Helical and Spiral Coil Configurations”, Mansoura Engineering Journal, Mar. 2021, Link.
  • “Hardware Implementation of Hybrid Data Driven-PI Control Scheme for Resilient Operation of Standalone DC Microgrid”, Batteries, 2024, Link.

         “State-of-the-Art Electric Vehicle Modeling: Architectures, Control, and Regulations”, Electronics, 2024, Link.

Conclusion

Ahmed Mosaad Abdelfattah Ibrahim presents a strong case for the “Best Researcher Award” due to his comprehensive academic background, diverse research experience, and leadership in both industry and academia. His international exposure and contributions to key areas of electrical engineering research further strengthen his candidacy. Focusing on a specialized area of research, enhancing his funding portfolio, and expanding his research output could further improve his prospects for the award. Overall, Ahmed demonstrates substantial potential and achievements, making him a worthy candidate for consideration.

Mostafa Bigdeli | Civil Engineering | Best Researcher Award

Mr.Mostafa Bigdeli | Civil Engineering | Best Researcher Award

Student University of Ottawa  Canada

Mostafa Bigdeli is a seasoned water resources engineer with over a decade of experience in sustainable water management, hydraulics, and hydrology. His expertise spans numerical modeling, hydrotechnical engineering, and designing water infrastructure. With a strong academic background and extensive research experience, Mostafa has contributed significantly to the field of water resources through his work at the University of Ottawa and the National Research Council of Canada.

Profile

Scopus

Education

🎓 Ph.D. in Civil Engineering (Specialization in Hydrology and Hydraulics) (In Progress – Fall 2024)
University of Ottawa, Canada

🎓 M.Sc. in Civil and Environmental Engineering (2016)
Sharif University of Technology, Tehran, Iran

🎓 B.Sc. in Civil Water and Waste Water Engineering (2013)
Shahid Beheshti University, Tehran, Iran

Experience

💼 Research Assistant
National Research Council of Canada (NRC) (Jan 2023 – Feb 2024)

  • Modeled microplastics transport and deposition.
  • Developed CFD models for hydraulic applications.
  • Collaborated with cross-functional teams for data integration.

💼 Research Assistant
University of Ottawa – NRC (Jan 2022 – Jan 2023)

  • Simulated microplastics transport in the Ottawa River.
  • Conducted field studies and laboratory experiments.

💼 Supervisor
Air and Climate Projects, Tehran, Iran (Apr 2019 – Aug 2021)

  • Managed air pollutants and GHG emission inventory projects.
  • Developed emission reduction strategies.

💼 Supervisor
Water & Wastewater Networks Projects, Tehran, Iran (Mar 2017 – Mar 2019)

  • Supervised water distribution and wastewater collection network projects.

Research Interests

Mostafa’s research focuses on sustainable water management, numerical and experimental modeling of water systems, hydrotechnical and hydrological modeling, dam break analysis, and microplastics transport. His work integrates advanced data analysis and computer modeling techniques to improve water resources management.

Awards

  • Ranked in the top 1% of the Nationwide University Entrance Exams for B.Sc.
  • Ranked in the top 0.5% of the Nationwide University Entrance Exams for M.Sc.

Publications

  • Bigdeli, M., Mohammadian, A., Pilechi, A. (2024). “A Laboratory Dataset on Transport and Deposition of Spherical and Cylindrical Large Microplastics for Validation of Numerical Models.” Journal of Marine Science and Engineering, MDPI. https://doi.org/10.3390/jmse12060953 – Cited by 5 articles.
  • Roshani, E., Popov, P., Kleiner, Y., Sanjari, S., Colombo, A., Bigdeli, M. (2024). “Detecting and Locating Chemical Intrusion in Water Distribution Systems Using 9-1-1 Calls.” Journal of Hydroinformatics. https://doi.org/10.2166/hydro.2024.299 – Cited by 3 articles.
  • Bigdeli, M., Taheri, M., Mohammadian, A. (2023). “Numerical Modeling of Dam-Break Flood Flows for Dry and Wet Sloped Beds.” ISH Journal of Hydraulic Engineering. https://doi.org/10.1080/09715010.2022.2052986 – Cited by 4 articles.
  • Bigdeli, M., Mohammadian, A., Pilechi, A. (2022). “Numerical Modeling of Marine Microplastics Deposition Using Coupled CFD-DEM.” 3rd IAHR Young Professionals Congress.
  • Bigdeli, M., Mohammadian, A., Pilechi, A., Taheri, M. (2022). “Lagrangian Modeling of Marine Microplastics Fate and Transport: The State of the Science.” Journal of Marine Science and Engineering, MDPI. https://doi.org/10.3390/jmse10040481 – Cited by 6 articles.
  • Bigdeli, M., Mohammadian, A. (2021). “Numerical Simulation of Dam-Break Flood Flows on Sloping Beds.” CFDSC2021 Conference.
  • Bigdeli, M., Mohammadian, A. (2021). “Numerical Simulation of Turbulent Offset Dense Jet Flow.” CSCE 2021 Annual Conference.