Yingyuan Liu | Engineering | Women Researcher Award

Ms. Yingyuan Liu | Engineering | Women Researcher Award

Professor | Shanghai Normal university | China

Dr. Liu Yingyuan is an accomplished researcher and faculty member specializing in the application of artificial intelligence (AI) in fluid machinery. With a strong academic foundation and extensive professional experience, she has contributed significantly to advancing machine learning models, turbulence analysis, airfoil optimization, and fault diagnosis. Currently serving at Shanghai Normal University, Dr. Liu’s expertise bridges the intersection of AI and fluid mechanics, making her a leader in her field.

Profile

Scopus

Education

Dr. Liu Yingyuan earned her Ph.D. in Fluid Machinery from Zhejiang University in 2016, where she focused on the intricate dynamics of fluid mechanics and advanced computational methods. Her undergraduate studies in Process Equipment and Control Engineering at the China University of Petroleum (East China), completed in 2011, laid a strong foundation in engineering principles and process optimization.

Experience

Dr. Liu has been a faculty member at Shanghai Normal University, where she combines her deep research expertise with her passion for teaching. Her academic career is marked by impactful research, collaborative projects, and mentorship of students, particularly in the realm of AI applications in fluid mechanics. Her contributions extend beyond academia through her active engagement in professional committees and collaborations with industry experts.

Research Interests

Dr. Liu’s research is centered on leveraging artificial intelligence technologies to address complex challenges in fluid machinery. Her interests include machine learning modeling for turbulence, optimal airfoil shape design, and fault diagnosis in fluid machinery. By integrating AI with engineering, she has developed innovative solutions that enhance the efficiency and reliability of mechanical systems.

Awards

Dr. Liu’s innovative research has garnered recognition in the academic and professional community. Notably, her studies in machine learning-driven fault diagnosis and airfoil optimization have earned her nominations for awards in engineering and AI applications. Her commitment to excellence continues to inspire peers and students alike.

Publications

  1. Liu YY, Shen JX, Yang PP, Yang XW. A CNN-PINN-DRL driven method for shape optimization of airfoils. Engineering Application of Computational Fluid Mechanics, 2025, 19(1): 2445144.
    • Cited by: Researchers developing AI-driven aerodynamics models.
  2. Shen JX, Liu YY, Wang Leqin.* A Deep Learning-Based Method for Airfoil Parametric Modeling. Chinese Journal of Engineering Design, 2024, 31(03): 292-300.
    • Cited by: Articles on parametric modeling techniques.
  3. Liu D, Liu YY. A Deep Learning-Based Fault Diagnosis Method for Fluid Machinery with Small Samples. Journal of Shanghai Normal University (Natural Sciences), 2023, 52(02): 264-271.
    • Cited by: Studies on fault diagnosis in mechanical systems.
  4. Liu YY, Gong JG, An K, Wang LQ. Cavitation Characteristics and Hydrodynamic Radial Forces of a Reversible Pump–Turbine at Pump Mode. Journal of Energy Engineering, 2020, 146(6): 04020066.
    • Cited by: Publications on hydrodynamics and pump-turbine systems.
  5. Liu Y Y, An K, Liu H, et al. Numerical and experimental studies on flow performances and hydraulic radial forces of an internal gear pump with a high pressure. Engineering Applications of Computational Fluid Mechanics, 2019, 13: 1, 1130-1143.
    • Cited by: Research focused on internal gear pump performance.
  6. Liu Y Y, Wang L Q, Zhu Z C.* Experimental and numerical studies on the effect of inlet pressure on cavitating flows in rotor pumps. Journal of Engineering Research, 2016, 4(2): 151-171.
    • Cited by: Studies on cavitation phenomena in rotor pumps.
  7. Liu Y Y, Wang L Q, Zhu Z C.* Numerical study on flow characteristics of rotor pumps including cavitation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(14): 2626-2638.
    • Cited by: Articles on numerical modeling of fluid flows.

Conclusion

Dr. Liu Yingyuan exemplifies the integration of advanced engineering knowledge and AI-driven innovation. Her pioneering contributions to the fields of fluid mechanics and machinery have not only pushed technological boundaries but also inspired the next generation of engineers and researchers. Dr. Liu’s work continues to serve as a cornerstone for advancements in intelligent mechanical systems, ensuring her lasting impact on both academia and industry.

Shams Al Ajrawi | Computer engineering | Best Researcher Award

Dr. Shams Al Ajrawi | Computer Engineering | Best Researcher Award

Assistant professor at Alliant International University, United States

Shams Al Ajrawi is a Lead Software Engineer and academic researcher with over a decade of experience in web application and backend development. His expertise spans across full-stack development, artificial intelligence (AI), data science, and Brain-Computer Interface (BCI) technologies. With a keen focus on solving intricate challenges, Shams has successfully led numerous industry and academic projects that have resulted in substantial financial savings and technological advancements. He has been actively involved in teaching, curriculum development, and research, playing a pivotal role in mentoring the next generation of engineers and computer scientists. His work bridges the gap between theoretical research and practical implementation, contributing to both corporate innovation and academic progress.

Profile: 

SCOPUS

Education:

Shams Al Ajrawi holds a Ph.D. in Electrical and Computer Engineering from a joint program between the University of California, San Diego, and San Diego State University, where his research focused on Brain-Computer Interface (BCI) applications. Prior to his Ph.D., he earned a Master’s degree in Electrical and Computer Engineering from the New York Institute of Technology and a Bachelor of Science in Computer Engineering from the Technological University. His academic journey is marked by a strong foundation in electrical engineering, computer science, and AI, with a specific focus on innovative applications in neuroscience and data processing.

Experience:

Shams has held prominent roles in both industry and academia. As a Lead Software Engineer at John Wiley & Sons, he led initiatives to enhance technology efficiency and reduce costs, including the integration of AI-based solutions like ChatGPT. His role also involved collaborating with corporate clients and managing cross-functional teams using Agile methodologies. In academia, he has served as an Associate Professor and Graduate Program Manager at Alliant International University, where he developed curricula, conducted research, and managed grants. Additionally, Shams is a Researcher Affiliate at UC San Diego’s Qualcomm Institute, focusing on BCI signal interpretation, and he has taught at several institutions, including San Diego State University and National University.

Research Interest:

Shams Al Ajrawi’s primary research interests lie in Brain-Computer Interface (BCI) technology, artificial intelligence, and signal processing. His work in the BCI domain has focused on improving signal extraction and classification, using techniques such as hierarchical recursive feature elimination and flexible wavelet transformation. His research aims to enhance the efficiency and accuracy of interpreting brain signals, particularly for applications related to assisting individuals with spinal cord injuries. Additionally, he explores the integration of AI and machine learning techniques in software development, cybersecurity, and data analytics, striving to develop innovative solutions that merge computational efficiency with real-world applications.

Awards:

Shams has been recognized for his contributions in both industry and academia. He received promotions and excellence awards for two consecutive years at John Wiley & Sons for his leadership and innovative approach in software engineering. In 2023, he was appointed as an Associate Professor at Alliant International University in recognition of his contributions to academia. He has also earned several professional certifications, including the ISACA certification (2023–2028) and Cisco’s CCNA certification, further solidifying his expertise in software engineering and networking.

Publications:

Shams Al Ajrawi has authored numerous papers in prestigious journals, focusing on BCI applications, RFID, and AI. Some of his notable publications include:

“Investigating Feasibility of Multiple UHF Passive RFID Transmitters Using Backscatter Modulation Scheme in BCI Applications” (2017) – Published in IEEE International Symposium on Performance Evaluation of Computer and Telecommunication Systems Cited by 35 articles.

“Bi-Directional Channel Modeling for Implantable UHF-RFID Transceivers in BCI Application” (2018) – Published in Journal of Future Generation Computer Systems, Elsevier Cited by 42 articles.

“Efficient Balance Technique for Brain-Computer Interface Applications Based on I/Q Down Converter and Time Interleaved ADCs” (2019) – Published in Informatics in Medicine Unlocked, Elsevier Cited by 30 articles.

“Hybrid MAC Protocol for Brain-Computer Interface Applications” (2020) – Published in IEEE Systems Journal Cited by 27 articles.

“Cybersecurity in Brain-Computer Interfaces: RFID-Based Design-Theoretical Framework” (2020) – Published in Informatics in Medicine Unlocked, Elsevier Cited by 22 articles.

Conclusion:

Shams Al Ajrawi stands out as a highly accomplished candidate for a “Best Researcher Award.” His rich experience, cutting-edge research, and impactful contributions across both industry and academia position him as a leading figure in his field. However, by narrowing his research focus and expanding interdisciplinary and mentorship efforts, he could enhance his candidacy even further. Overall, he appears highly suitable for the award.