Rooholla Talebitooti | Mechanical Engineering | Best Researcher Award

Prof. Dr. Rooholla Talebitooti | Mechanical Engineering | Best Researcher Award

Prof. Dr. Rooholla Talebitooti | Mechanical Engineering – Professor at Iran University of Science and Technology, Iran

Professor Roohollah Talebitooti is a distinguished academic and researcher in the field of Mechanical Engineering with a specialization in acoustic-structural interactions, noise transmission, advanced composites, and vibration control of complex systems. Currently serving as a full professor at the Iran University of Science and Technology in Tehran, he has made a significant impact in both theoretical and applied research across various sub-disciplines including porous materials, vehicle dynamics, and smart structure design. With over a decade of academic leadership, he has established himself as a pioneering figure in acoustics and mechanical vibration studies, collaborating across international platforms to advance engineering science.

Profile Verified 

ORCID / Scopus / Google Scholar

Education

Professor Talebitooti earned his Ph.D. in Mechanical Engineering in 2009 from the Iran University of Science and Technology, a premier institution recognized for its rigorous technical education and innovation-led research. His academic foundation combines strong analytical modeling capabilities with experimental validation approaches, which he refined throughout his doctoral and post-doctoral pursuits. His continuous educational growth is reflected not only in formal degrees but also in his up-to-date contributions to the evolving fields of acoustic materials and structural dynamics.

Experience

Professor Talebitooti has built an illustrious academic career through his tenure at the Iran University of Science and Technology, where he has held key teaching and research positions. As a faculty member, he has mentored graduate and doctoral students in complex mechanical systems and noise control design, while also leading research projects that intersect structural engineering and material science. His experience includes extensive collaboration with scholars across disciplines, grant writing, and publishing in high-impact international journals. His ability to bridge computational models with real-world applications has earned him respect in both academic and industrial circles.

Research Interest

Professor Talebitooti’s research interests are centered around acoustic wave propagation, vibration control in aerospace and automotive systems, laminated and porous composite structures, and nonlinear dynamics in engineering design. He has contributed to advancements in auxetic core materials, flexoelectric shell behavior, and the integration of control strategies to enhance sound insulation in advanced structures. His focus on noise mitigation through structural modification is both timely and technologically critical, given current global challenges in transportation and aerospace industries.

Awards and Recognition

Throughout his career, Professor Talebitooti has earned numerous accolades for his contributions to mechanical engineering, particularly in structural acoustics and vibration mechanics. His inclusion in editorial roles and peer recognition through citations is indicative of the widespread influence of his work. He has been commended at national and institutional levels for both academic excellence and mentorship. His consistent output and relevance to emerging challenges place him in a strong position for the Best Researcher Award.

Publications

📘 Non-alignment effects on the frequency behaviors of sandwich stepped cylindrical shells with auxetic 3D-ARCS core, Thin-Walled Structures, 2025 – cited by 22 articles.
🛩️ Acoustic characteristics improve of doubly curved aerospace systems considering an optimum control strategy, Aerospace Science and Technology, 2025 – cited by 16 articles.
🔊 Effect of Three-Dimensional auxetic honeycomb core on behavior of sound transmission loss in shallow sandwich cylindrical shell, Composite Structures, 2025 – cited by 18 articles.
💡 On size-dependent wave propagation of flexoelectric nanoshells interacted with internal moving fluid flow, Waves in Random and Complex Media, 2024 – cited by 25 articles.
🔧 Enhancement of sound transmission through an aircraft structure modeled as a doubly curved shell under uncertainty considering robust H∞ controller, Journal of Vibration and Control, 2024 – cited by 10 articles.
🔥 Hygrothermal vibro-buckling of FG ceramic-steel porous consolidated conical-conical shells, Thin-Walled Structures, 2024 – cited by 14 articles.
⚙️ A comparative study on vibration suppression and energy harvesting via mono-, bi-, and tri-stable piezoelectric nonlinear energy sinks, Nonlinear Dynamics, 2024 – cited by 21 articles.

Conclusion

In summary, Professor Roohollah Talebitooti embodies the excellence, innovation, and academic rigor that the Best Researcher Award seeks to recognize. His profound influence on the development of acoustics and vibration control technologies, coupled with his dedication to research dissemination and student mentorship, make him a strong and deserving candidate. Through his dynamic and forward-looking approach, Professor Talebitooti has not only contributed to foundational science but also advanced practical solutions for engineering challenges that impact aerospace, automotive, and civil systems globally. His scholarly impact and sustained research output underscore his eligibility for this prestigious recognition.

Zhenyu Gao | Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhenyu Gao | Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhenyu Gao | Engineering – Associate Professor at Northeastern University at Qinhuangdao, China

Zhenyu Gao is a distinguished Associate Professor at the School of Control Engineering, Northeastern University at Qinhuangdao. His academic journey is marked by groundbreaking research in control science and engineering, particularly in unmanned systems, autonomous intelligence, and intelligent transportation systems. Gao’s work is recognized globally for its innovative approaches to vehicular platoon control and multi-agent systems, contributing significantly to both theoretical advancements and practical applications in the field. His dedication to academic excellence is reflected in numerous prestigious awards, influential publications, and leadership roles in scientific communities.

Profile:

Orcid

Education:

Zhenyu Gao earned his Ph.D. in Control Science and Engineering from Dalian Maritime University, China, where he developed a strong foundation in advanced control theories. Prior to his doctoral studies, he completed his Bachelor’s degree in Automation at Shandong University of Technology. His educational background reflects a consistent trajectory of academic rigor, equipping him with the analytical skills and technical expertise necessary to excel in complex research areas.

Experience:

Currently serving as an Associate Professor, Gao has played a pivotal role in advancing research in control engineering. His professional journey includes leading several high-impact projects funded by national and provincial research foundations. Gao has also contributed as an Associate Editor for reputable journals and serves as a reviewer for top-tier publications in intelligent transportation systems and vehicular technology. His role as a mentor has guided numerous graduate students, fostering the next generation of researchers in his field.

Research Interests:

Gao’s research interests span unmanned systems, autonomous intelligence, collaborative control, multi-agent systems, and intelligent transportation systems. His work focuses on developing robust control strategies for vehicular platoons, addressing challenges related to actuator nonlinearities, sensor attacks, and real-time system performance. Gao’s innovative approaches have significantly advanced the understanding of dynamic systems and their applications in modern transportation and automation technologies.

Awards 🏆:

  • Wiley Top Downloaded Article Award (2023): Recognizing his highly cited publication in intelligent transportation systems.

  • Excellent Master Thesis Advisor of Northeastern University (2023): Honoring his mentorship and academic guidance.

  • Excellent Master Thesis Advisor of Liaoning Province (2024): Acknowledging his contributions to graduate education and research excellence.

Selected Publications 📚:

  1. Gao, Z., Li, X., Wei, Z., Liu, W., Guo, G., & Wen, S. (2025). Observer-based secure predefined-time control of vehicular platoon systems under attacks in sensors and actuators – IEEE Transactions on Intelligent Transportation Systems 📈 (Cited by 150+)
  2. Gao, Z., Liu, W., Wei, Z., & Guo, G. (2025). Adaptive finite-time prescribed performance control of vehicular platoons with multilevel threshold and asymptotic convergence – IEEE Transactions on Intelligent Transportation Systems 📊 (Cited by 120+)
  3. Gao, Z., Li, X., Wei, Z., Guo, G., Wen, S., Zhao, Y., & Mumtaz, S. (2025). Fixed-time secure control for vehicular platoons under deception attacks on both sensor and actuator via adaptive fixed-time disturbance observer – IEEE Internet of Things Journal 🚗 (Cited by 95+)
  4. Gao, Z., Li, X., Wei, Z., & Guo, G. (2024). Adaptive fuzzy finite-time asymptotic tracking control of vehicular platoons with nonsmooth asymmetric input nonlinearities – IEEE Transactions on Intelligent Transportation Systems 🚀 (Cited by 85+)
  5. Gao, Z., Wei, Z., Liu, W., & Guo, G. (2025). Adaptive finite-time prescribed performance control with small overshoot for uncertain 2-D plane vehicular platoons – IEEE Transactions on Vehicular Technology 🛰️ (Cited by 80+)
  6. Gao, Z., Sun, Z., & Guo, G. (2024). Adaptive predefined-time tracking control for vehicular platoons with finite-time global prescribed performance independent of initial conditions – IEEE Transactions on Vehicular Technology 🚦 (Cited by 75+)
  7. Gao, Z., Zhang, Y., & Guo, G. (2023). Adaptive fixed-time sliding mode control of vehicular platoons with asymmetric actuator saturation – IEEE Transactions on Vehicular Technology 🛣️ (Cited by 60+)

Conclusion:

Zhenyu Gao’s distinguished career reflects an exceptional blend of academic rigor, innovative research, and impactful mentorship. His contributions to control science and engineering, particularly in autonomous systems and intelligent transportation, have set new benchmarks in the field. Gao’s extensive publication record, combined with his leadership in research projects and academic communities, underscores his suitability for the “Best Researcher Award.” His work continues to influence and inspire advancements in control engineering, making him a worthy candidate for this prestigious recognition.

Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering – Civil Engineering at Western Sydney University, Australia

Kazem Javan is an accomplished researcher and PhD student in Civil and Environmental Engineering at Western Sydney University. He is passionate about advancing sustainable infrastructure solutions through innovative engineering approaches that address environmental challenges. His research focuses on developing durable, acid-resistant materials for sewer pipe rehabilitation, emphasizing the use of sustainable, recycled materials to reduce CO₂ emissions. Kazem is also involved in cutting-edge projects related to carbon-absorbing concrete, aiming to contribute to the circular economy. He brings a wealth of experience in environmental engineering, particularly in water management and resource efficiency, which he integrates into his academic work and professional practice.

Profile:

Google Scholar

Education:


Kazem Javan’s educational journey is rooted in Civil and Environmental Engineering. He is currently pursuing his PhD in Civil Engineering at Western Sydney University, with a focus on developing sustainable materials for infrastructure. Before this, Kazem completed a Master’s in Civil Engineering with a specialization in Water Engineering, where his research examined the impacts of climate change on water resources. His academic foundation began with a Bachelor’s in Civil Engineering, which provided him with a strong grasp of structural mechanics, geotechnical engineering, and transportation systems. This comprehensive academic background forms the foundation for his innovative work in sustainable engineering.

Experience:


Kazem Javan has significant experience in both the academic and professional domains of civil and environmental engineering. He currently works as an Environmental and Civil Engineering Manager, where he leads projects focusing on sustainable infrastructure development and low-emission technologies. In this role, he ensures compliance with environmental regulations and integrates renewable resource utilization in engineering practices. Previously, Kazem was a Technical Supervisor at Ideh Afroz Aria Company, where he supervised water infrastructure projects and integrated climate resilience strategies. His broad experience allows him to combine theoretical knowledge with practical solutions in real-world applications, enhancing both the sustainability and efficiency of civil engineering projects.

Research Interests:

Kazem’s research interests are centered around sustainable engineering solutions, focusing on the development of materials and systems that contribute to environmental preservation and climate change mitigation. His current research explores the use of recycled materials, such as broken glass and mine by-products, for sewer pipe rehabilitation and the creation of durable, acid-resistant coatings. Kazem is also dedicated to advancing carbon-absorbing concrete technologies and is actively involved in the CRC SmartCrete project, where he explores the potential of waste minerals to enhance sustainability in construction. His work in environmental engineering spans areas such as water resource management, renewable energy, waste management, and the water-energy-food nexus, all aimed at reducing environmental impact.

Awards:


Kazem Javan has been recognized for his exceptional academic and professional achievements. He was awarded the SmartCrete CRC and Western Sydney University Postgraduate Research Scholarship, which supports his ongoing research into sustainable infrastructure and material innovations. This award highlights Kazem’s commitment to advancing sustainability in the engineering field, particularly through the development of eco-friendly solutions that can have a lasting impact on construction practices and environmental protection. His ability to combine technical expertise with a strong focus on sustainability has earned him the recognition he deserves.

Publications:


Kazem has contributed significantly to the academic community, publishing several impactful papers in prestigious journals. His work addresses critical issues in water resource management, environmental sustainability, and the effects of climate change on infrastructure. Below are some of his notable publications:

  1. Javan, K., Banihashemi, S., Nazari, A., et al. (2025). Coupled SWMM-MOEA/D for Multi-Objective Optimization of Low Impact Development in Urban Stormwater Systems. Journal of Hydrology 🌍 (Cited by: 12)
  2. Javan, K., Darestani, M., Ibrar, I., et al. (2025). Interrelated Issues within the Water-Energy-Food Nexus with a Focus on Environmental Pollution for Sustainable Development: A Review. Environmental Pollution 🌱 (Cited by: 9)
  3. Javan, K., Altaee, A., BaniHashemi, S., et al. (2024). A Review of Interconnected Challenges in the Water–Energy–Food Nexus: Urban Pollution Perspective towards Sustainable Development. Science of the Total Environment 🏙️ (Cited by: 16)
  4. Javan, K., & Darestani, M. (2024). Assessing Environmental Sustainability of a Vital Crop in a Critical Region: Investigating Climate Change Impacts on Agriculture Using the SWAT Model and HWA Method. Heliyon 🌾 (Cited by: 5)
  5. Javan, K., Altaee, A., Darestani, M., et al. (2023). Assessing the Water–Energy–Food Nexus and Resource Sustainability in the Ardabil Plain: A System Dynamics and HWA Approach. Water 💧 (Cited by: 20)
  6. Javan, K., Mirabi, M., Hamidi, S. A., et al. (2023). Enhancing Environmental Sustainability in a Critical Region: Climate Change Impacts on Agriculture and Tourism. Civil Engineering Journal 🏗️ (Cited by: 3)
  7. Javan, K., Lialestani, M. R. F. H., Ashouri, H., & Moosavian, N. (2015). Assessment of the Impacts of Nonstationarity on Watershed Runoff Using Artificial Neural Networks: A Case Study in Ardebil, Iran. Modeling Earth Systems and Environment 🌍 (Cited by: 8)

Conclusion:


Kazem Javan is an outstanding candidate for the “Best Researcher Award,” thanks to his groundbreaking work in sustainable engineering, water management, and climate change mitigation. His dedication to creating environmentally friendly materials and improving construction practices positions him as a leader in his field. With a strong academic background, extensive professional experience, and a proven track record of impactful research, Kazem continues to make significant contributions to the engineering community. His work not only addresses pressing global environmental issues but also sets the stage for a more sustainable future in civil and environmental engineering. His commitment to integrating innovative solutions into practice makes him highly deserving of this prestigious recognition.