Seyedrasoul Nabavian | Civil | Best Researcher Award

Assist. Prof. Dr. Seyedrasoul Nabavian | Civil | Best Researcher Award

Assist. Prof. Dr. Seyedrasoul Nabavian | Civil – Ayatollah Boroujeri University, Iran

Dr. Seyedrasoul Nabavian is an emerging scholar in the field of civil engineering with a developing academic track record in structural health monitoring and fracture mechanics. Currently serving as an Assistant Professor of Civil Engineering at Ayatollah Boroujerdi University, he has demonstrated a strong commitment to advancing knowledge in structural dynamics, particularly through innovative output-only modal identification techniques and sustainable material research. His contributions, though modest in scale at this stage of his career, display focused rigor, collaboration, and technical depth, positioning him as a researcher with high potential in both academic and applied engineering domains.

Profile Verified:

Google Scholar

Education:

Dr. Nabavian received his academic training in civil and structural engineering, with advanced studies focusing on structural mechanics, space structures, and material behavior under dynamic and environmental stressors. Through his postgraduate education, he developed a foundational interest in experimental and analytical methods for diagnosing structural performance, leading to his ongoing work in monitoring systems and advanced concrete technologies.

Experience:

Professionally, Dr. Nabavian has worked in both academic and collaborative research environments, partnering with national and international researchers to contribute to ongoing challenges in structural reliability and monitoring. His academic appointments have enabled him to teach courses in structural engineering, supervise students, and contribute to institutional research projects. Moreover, his participation in interdisciplinary teams involving experimental mechanics and computational analysis has strengthened his methodological base and research versatility.

Research Interests:

His research interests are concentrated in structural identification and monitoring, fracture mechanics, and sustainable construction materials. Specifically, he investigates output-only techniques for modal identification, noise effects on signal processing in structures, and fracture behavior in recycled aggregate concrete enhanced with nanomaterials or subjected to extreme conditions. These interests reflect a critical alignment with global trends toward smart infrastructure, resilient design, and environmental sustainability in civil engineering.

Awards:

While specific awards or honors are not listed in the current data, Dr. Nabavian’s collaborative research output and publication record in indexed journals demonstrate recognition within the academic community. His work has been cited across a range of publications, and he has contributed to the growing body of knowledge in non-invasive structural monitoring and advanced material modeling. As he continues to build his citation metrics and publication footprint, he is well-positioned to be recognized through future awards focused on early-career researchers or interdisciplinary contributions.

Publications:

📌 “Determining minimum number of required accelerometers for output-only structural identification of frames”
arXiv, 2020 – Cited by 4
A foundational study proposing optimal sensor placement strategies for structural monitoring.
🔍 “Effect of noise on output-only modal identification of beams”
arXiv, 2020 – Cited by 3
Explores how noise affects the accuracy of modal properties in beams.
🧪 “Output-only modal analysis of a beam via frequency domain decomposition method using noisy data”
International Journal of Engineering, 2019 – Cited by 3
Improves reliability in modal analysis using frequency-based techniques with noisy datasets.
♻️ “Fracture characteristics of recycled aggregate concrete using work-of-fracture and size effect methods: the effect of water to cement ratio”
Archives of Civil and Mechanical Engineering, 2023 – Cited by 3
Focuses on sustainable construction through recycled materials and mechanical modeling.
🌱 “Influence of nano‐silica particles on fracture features of recycled aggregate concrete using boundary effect method”
Structural Concrete, 2024 – Cited by 1
Investigates how nano-silica improves recycled concrete using experimental fracture testing.
🎯 “Damping estimation of a double-layer grid by output-only modal identification”
Scientia Iranica, 2021 – Cited by 1
Analyzes structural damping through output-only techniques applied to spatial grids.
🏗️ “Output-only Structural Identification of a Double-layer Grid with Ball Joint System”
Modares Civil Engineering Journal, 2026 – Not yet cited
Recent publication addressing modal identification in jointed structural frameworks.

Conclusion:

In conclusion, Dr. Seyedrasoul Nabavian represents a promising academic with solid technical grounding and a growing portfolio of peer-reviewed research. His contributions, although currently at an early career stage in terms of citations and publication scale, are impactful in terms of methodology and societal relevance. His dedication to structural monitoring, sustainability, and experimental mechanics underscores a thoughtful research agenda that addresses both immediate engineering challenges and long-term infrastructure needs. With continued support and recognition, he is expected to expand his research reach and strengthen his role in the international civil engineering research community.

 

 

 

Tirupati Rao | Renewable Energy | Best Researcher Award

Dr. Tirupati Rao | Renewable Energy | Best Researcher Award

Dr. Tirupati Rao | Renewable Energy – Senior Design Process Engineer at Fichtner Consulting Engineers Private Ltd, India

Dr. Tirupati Rao V is a distinguished researcher and energy systems engineer whose work has significantly contributed to the advancement of energy sustainability in India and abroad. With a keen focus on green hydrogen, solar thermal energy, and integrated renewable systems, he has built a multidisciplinary portfolio that spans academic research, engineering design, and international collaboration. As a former Internal Full-Time Research Fellow at VIT and currently a Senior Design Engineer at Fichtner Consulting Engineers India Pvt. Ltd., he demonstrates exceptional leadership in both theoretical innovation and practical application. His contributions include the development of photovoltaic thermal (PVT) systems, optimization of green fuel production processes, and detailed feasibility studies for industrial-scale renewable energy projects.

Academic Profile

Google Scholar  | ORCIDScopus

Education

Dr. Rao completed his Ph.D. in Thermal & Energy Engineering at Vellore Institute of Technology (VIT), Vellore, where his research focused on experimental investigation of photovoltaic/thermal systems using bi-symmetrical web flow thermal absorbers. He earned his Master of Technology in Thermal Engineering from Adarsh College of Engineering under JNTU Kakinada, where he studied heat transfer enhancement using conical-ring and twisted tape inserts, graduating with a distinction. His Bachelor of Technology in Mechanical Engineering, also under JNTU Kakinada, included a thesis on the design and analysis of propeller blades, solidifying his early interest in applied mechanical systems.

Professional Experience

Dr. Rao currently serves as a Senior Design Engineer at Fichtner Consulting Engineers India Pvt. Ltd., where he manages engineering design and techno-economic studies for green hydrogen, green ammonia, and energy storage projects. Prior to this, he worked as a Research Analyst at IRADe, New Delhi, and held multiple academic roles including Researcher at VIT University, Assistant Professor at Gonna Institute of Technology & Management, and Lecturer at GIET Polytechnic College. His multidisciplinary experience covers industrial-scale project execution, academic teaching, and research-based innovation. His engineering contributions include detailed reports and pre-bid consultations for entities like Sembcorp, EY Mahagenco, AM Green, and Maruti Suzuki.

Research Interests

Dr. Rao’s research focuses on green hydrogen generation, compressed biogas (CBG) feasibility, photovoltaic thermal systems, solar energy utilization, and phase change materials (PCM) for heat storage. He specializes in renewable energy modeling, hourly solar/wind profile analysis, electrolyzer sizing and optimization, green fuel synthesis, and thermal energy system simulation. His broader interests encompass carbon credit analysis, system modeling using SAM and MESSAGE software, and life-cycle assessments of energy technologies.

Awards and Recognition

Dr. Rao is the recipient of the Raman Research Award (RRA) in both 2021 and 2022, awarded for his high-quality publications in SCOPUS and Web of Science indexed journals. Additionally, he and his PhD supervisor won the SEED Grant in 2020 for groundbreaking work on solar photovoltaic thermal energy systems. He has earned the NPTEL Elite+ Silver Certificate in Solar Energy Engineering and has served as a reviewer for prestigious journals such as IEEE Transactions on Transportation Electrification and Energy Sources Part A.

Key Publications 📚

  1. 📘 “Green Hydrogen Generation from Wind Energy Resource for an Indian Region” – Renewable Energy, 2025, cited by 10+ articles.
  2. 🚗 “Vehicle-Integrated PV in Indian Highways: An Empirical Assessment” – Energy, 2025, cited by 7+ articles.
  3. 🌞 “Embodied Energy & CO2 Emission Analysis of Stand-Alone Crystalline PVT Systems” – Sustainable Cities and Society, 2022, cited by 35+ articles.
  4. 💧 “Thermal Analysis of Hybrid PVT Water Collector with LHTES” – Journal of Energy Storage, 2022, cited by 40+ articles.
  5. 🧮 “Exergo-Economic and CO2 Analysis of Bi-Symmetrical PVT System” – Journal of Energy Resources Technology, 2023, cited by 12+ articles.
  6. 🌿 “Review on PVT Collector Systems with Absorber Configurations” – Energy & Environment, 2021, cited by 45+ articles.
  7. 🔋 “Experimental 3E Analysis on Web Flow PVT System” – Solar Energy, 2024, cited by 20+ articles.

Conclusion

With over 9 high-impact journal publications, 2 patents, a cumulative impact factor exceeding 60, and active collaborations across institutions in Malaysia, Brunei, and India, Dr. Tirupati Rao V has emerged as a leading expert in renewable energy systems and sustainability-focused engineering. His ability to translate complex technical insights into scalable engineering solutions demonstrates his readiness for high honors such as the Best Researcher Award. In addition to his research achievements, Dr. Rao’s consulting and design leadership roles across multiple high-stake renewable energy projects reinforce his practical contributions to industry transformation. His combined expertise, dedication, and innovative thinking make him an exemplary candidate for recognition and continued support in advancing global sustainable energy goals.

Fei Yang | Engineering | Best Researcher Award

Prof. Dr. Fei Yang | Engineering | Best Researcher Award

Prof. Dr. Fei Yang | Engineering – Professor at China University of Petroleum, China

Dr. Fei Yang is a distinguished researcher in petroleum engineering, affiliated with the China University of Petroleum (East China), Qingdao. With over 149 published papers and more than 4,000 citations to his credit, Dr. Yang has carved out a reputation as a highly productive and innovative scholar. His research consistently targets practical problems in the oil and gas industry, specifically related to crude oil rheology, drag-reducing agents, and flow assurance technologies. An h-index of 35 further underscores the impact and relevance of his work in academic and industrial circles alike.

Profile Verified:

Scopus

Education:

Dr. Yang completed his academic training in the disciplines of chemical and petroleum engineering. His education laid a strong foundation in both theoretical frameworks and experimental applications relevant to crude oil processing, material-fluid interactions, and enhanced oil recovery methods. His doctoral studies focused on advanced fluid mechanics and chemical treatments for heavy oil behavior modification, which now forms the backbone of his research career.

Experience:

Currently serving as a faculty member and active researcher at the China University of Petroleum (East China), Dr. Yang brings years of hands-on research and academic experience. He has been involved in several national and collaborative research projects and has published extensively in top-tier scientific journals. Dr. Yang is well-versed in both experimental and simulation-based methodologies and has mentored numerous postgraduate students. His collaboration with more than 170 co-authors reflects his openness to interdisciplinary and international research.

Research Interests:

Dr. Yang’s core research interests span several key areas in energy and petroleum science:

  • Rheology and emulsification of crude oil

  • Pipeline drag reduction technologies

  • CO₂-enhanced oil recovery methods

  • Nanoparticle–asphaltene interactions

  • Flow assurance and thermal conductivity of waxy oils

  • Development of novel surfactants for corrosion and flow improvement

These topics are not only academically significant but also industrially relevant, contributing to safer, more efficient oil production and transportation systems.

Awards:

While no specific awards are currently listed under Dr. Yang’s Scopus profile or public academic records, his high citation metrics, strong publication record, and consistent scholarly output position him as a deserving candidate for recognition. His eligibility for the Best Researcher Award is well-supported by tangible academic performance indicators such as peer-reviewed articles in high-impact journals, collaborative output, and global research visibility.

Selected Publications:

📘 Enhancing shear resistance in ultrahigh-molecular-weight polyolefin drag-reducing agents via siloxane bond integration – Energy, 2025 (Cited by 0)
🔬 Rheological properties and coalescence stability of degassed crude oil emulsion: Influence of supercritical CO₂ treatment – Journal of CO₂ Utilization, 2025 (Cited by 1)
🧪 Modification Effect of Asphaltene Subfractions with Different Polarities on Three kinds of Solid Nanoparticles and Their Costabilization of Crude Oil Emulsion – Energy & Fuels, 2025 (Cited by 1)
🛢️ Influence of CO₂ Treatment Pressure on the Chemical Composition and Rheological Properties of Degassed Waxy Crude Oil – ACS Omega, 2024 (Cited by 3)
🔥 Mechanism study on rheological response of thermally pretreated waxy crude oil – Geoenergy Science and Engineering, 2024 (Cited by 1)
🧴 Synthesis and Performance Evaluation of Multialkylated Aromatic Amide Oligomeric Surfactants as Corrosion Inhibitor/Drag Reducing Agents for Natural Gas Pipeline – ACS Omega, 2024 (Cited by 0)
❄️ Morphology of Wax Crystals Affects the Rheological Properties and Thermal Conductivity of Waxy Oils – Industrial & Engineering Chemistry Research, 2024 (Cited by 0)

Conclusion:

Dr. Fei Yang’s extensive and impactful body of work, combined with his continued output and collaborations, demonstrates both scholarly excellence and a strong commitment to addressing vital engineering challenges. His research advances are not only academically rigorous but also have significant industrial applications, particularly in the optimization of crude oil transport and energy systems. Despite a lack of publicly listed awards, the evidence of influence, innovation, and productivity makes Dr. Yang a strong and well-qualified candidate for the Best Researcher Award. His nomination is both timely and well-deserved, reflecting excellence across academic, collaborative, and applied research domains.

 

 

 

Yuanyuan Xu | Engineering | Best Researcher Award

Prof. Yuanyuan Xu | Engineering | Best Researcher Award

Prof. Yuanyuan Xu | Engineering – Guangdong Ocean University, China

Professor Xu Yuanyuan is an accomplished Chinese electrical engineering scholar, currently serving at Guangdong Ocean University. Born in July 1988 in Suixian, Henan Province, she has cultivated a strong academic and professional career focused on superconducting motor technologies, offshore wind energy systems, and ship propulsion innovations. With deep roots in both theoretical research and practical application, she has become a rising figure in the marine electrical systems and renewable energy community. Her interdisciplinary contributions and leadership in several national and provincial research projects affirm her as a deserving candidate for the Best Researcher Award.

Profile Verified:

ORCID

Education:

Professor Xu’s academic journey demonstrates a global and interdisciplinary outlook. She earned her undergraduate degree in Automation from Henan University of Science and Technology in 2010. Pursuing further expertise, she enrolled in a joint Master’s and Doctoral program at Southwest Jiaotong University in Vehicle Operation Engineering, graduating in 2015. During the same period, she earned a PhD in Electronics and Electrical Engineering from Tokyo University of Marine Science and Technology under the supervision of Professor Izumi Mitsuru. This dual academic training provided her with a robust foundation in motor design, marine propulsion systems, and advanced superconductivity applications.

Experience:

Xu Yuanyuan began her postdoctoral and early faculty career at Guangdong Ocean University in 2015. Rapidly progressing through the academic ranks, she was appointed Associate Professor in 2017 and promoted to full Professor in 2024. Her long-standing research focus has included motor parameter optimization, energy-efficient marine electrical systems, and fault diagnosis for hybrid ship propulsion. She has also actively mentored student innovation projects and contributed to several national-level research initiatives, reflecting her deep commitment to academic excellence and applied engineering development.

Research Interests:

Professor Xu’s research interests span several forward-looking areas of marine engineering and applied superconductivity. Her core focus lies in:

  • Ship control system monitoring and performance optimization

  • Motor design and optimization for marine applications

  • Control strategies for ship hybrid electric propulsion systems

  • Intelligent control of ship operations

Her interdisciplinary research merges computational modeling, system simulations, and experimental validations—enabling her to advance the practical performance of next-generation ship propulsion technologies.

Awards:

Professor Xu has been honored with several prestigious accolades recognizing her academic and pedagogical contributions. Notably, she received the China Navigation Society Young Talents Support Engineering Talents Award (2022) and the Teaching Master Award from Guangdong Ocean University (2023). She also received the Excellence in Teaching Quality Award during the COVID-19 pandemic and was recognized for her online hybrid teaching module “Basics of Marine Automation” (2020). Additionally, she received guidance awards for undergraduate thesis excellence and was instrumental in securing a Bronze Award at the 8th China International Internet+ Competition in 2022.

Publications:

  1. 🛳️ A Saturation Adaptive Nonlinear Integral Sliding Mode Controller for Ship Permanent Magnet Propulsion Motors, Journal of Marine Science and Engineering, 2025 – Cited by 6.
  2. ⚙️ Non-Singular Fast Terminal Composite Sliding Mode Control of Marine Permanent Magnet Synchronous Propulsion Motors, Machines, 2025 – Cited by 5.
  3. 🌪️ Characteristic Research and Structural Optimization of Coreless Superconducting Linear Traction Motor, Micromotors, 2024 – Cited by 7.
  4. 🌀 Multi-objective Optimization of Superconducting Linear Motor Considering Racetrack Coils, IEEE TASC, 2024 – Cited by 9.
  5. 🌊 Optimization Study of the Main Parameters of Wind Turbine Generators, Superconductor Science and Technology, 2022 – Cited by 11.
  6. ⚡ Study on Electrical Design of Large-Capacity Fully Superconducting Offshore Wind Turbine Generators, IEEE TASC, 2021 – Cited by 15.
  7. 🌍 Electrical Design and Structure Optimization of 10 MW Superconducting Wind Turbine Generators, Physica C, 2020 – Cited by 17.

Conclusion:

Professor Xu Yuanyuan stands at the forefront of research in marine propulsion, wind energy systems, and superconducting motor technologies. Through her strategic leadership in multi-institutional projects, mentorship of emerging researchers, and commitment to academic excellence, she has significantly advanced the frontiers of electrical engineering in marine contexts. Her globally recognized research, practical innovations, and dedication to student success render her an outstanding candidate for the Best Researcher Award. Her work not only contributes to scholarly literature but also drives forward the transition toward intelligent and sustainable marine energy systems.

 

 

 

Dr. Wang Jia | Engineering | Women Researcher Award

Dr. Wang Jia | Engineering | Women Researcher Award

Dr. Wang Jia | Engineering – Student at Shanghai Jiao Tong University, China

Wang Jia is an emerging scholar in the field of computational fluid dynamics and artificial intelligence, currently pursuing her Ph.D. in Transportation Engineering. Her work integrates cutting-edge deep reinforcement learning (DRL) algorithms with high-fidelity numerical simulation tools to enhance active flow control strategies. With a multidisciplinary foundation in hydraulic engineering, computer science, and high-performance computing, she is known for her innovative contributions in simulating and optimizing fluid behavior around complex geometries. Her growing body of peer-reviewed publications, conference presentations, and research achievements places her at the forefront of next-generation AI-driven engineering solutions.

Profile Verified:

ORCID | Google Scholar

Education:

Wang Jia’s academic journey reflects a track record of excellence across all levels. She completed her undergraduate studies in Hydraulic Engineering, graduating at the top of her class. She continued her academic progression with a Master’s degree in Hydraulic Engineering, where she maintained a high GPA and was recommended directly for Ph.D. studies. Currently, she is a Ph.D. candidate at Shanghai Jiao Tong University, one of China’s most prestigious institutions. She has received national-level scholarships at each stage of her academic life, consistently ranking in the top 1% of her cohorts.

Experience:

Wang Jia has built substantial experience in simulation-driven research, combining physics-based models with data-driven intelligence. She has contributed to national and interdisciplinary projects, including experimental hydraulic studies of spillway systems, AI-enhanced shipbuilding construction, and energy-efficient ship dynamics. She developed and implemented DRL algorithms (DDPG, PPO, SAC) to optimize synthetic jet actuation, and she has successfully coupled these models with CFD solvers like OpenFOAM and ANSYS Fluent. Her work extends to high-performance computing, where she has significantly improved parallel simulation efficiency—an essential factor for real-time engineering solutions.

Research Interests:

Her primary research interests include deep reinforcement learning for flow control, high-performance computing in fluid dynamics, and intelligent systems for energy-efficient engineering. She is especially focused on the control of turbulent and unsteady flows around bluff bodies, using AI algorithms to mimic adaptive, biologically inspired responses. Her work stands at the confluence of artificial intelligence, fluid mechanics, and computational engineering, aiming to contribute scalable, intelligent control systems for marine and aerospace applications.

Awards:

Throughout her academic career, Wang Jia has consistently earned prestigious scholarships and honors that recognize both academic excellence and research potential. She received the National Scholarship at the undergraduate, master’s, and doctoral levels—a rare feat. She was also awarded an “Outstanding Oral Presentation” at a national Ph.D. forum and was selected to present at high-profile academic conferences such as ASME’s International Offshore Engineering event. These honors affirm both the quality of her research and her ability to communicate it effectively within the scientific community.

Selected Publications 📚:

  • 🌀 Robust and Adaptive Deep Reinforcement Learning for Enhancing Flow Control around a Square Cylinder, Physics of Fluids, 2024 — Cited by: 11
  • 🧠 Deep Reinforcement Learning-Based Active Flow Control of an Elliptical Cylinder, Physics of Fluids, 2024 — Cited by: 8
  • 🚀 Optimal Parallelization Strategies for Active Flow Control in DRL-Based CFD, Physics of Fluids (Featured Article), 2024 — Cited by: 8
  • 💨 Effect of Synthetic Jets Actuator Parameters on DRL-Based Flow Control, Physics of Fluids (Special Topic), 2024 — Cited by: 6
  • 🌊 Fluctuating Characteristics of the Stilling Basin with a Negative Step, Water, 2021 — Cited by: 5
  • ⏱ Time-Frequency Characteristics of Fluctuating Pressure Using HHT, Mathematical Problems in Engineering, 2021 — Cited by: 1
  • ⚡ Strategies for Energy-Efficient Flow Control Leveraging DRL, Engineering Applications of Artificial Intelligence, 2025 — Published, citations pending

Conclusion:

Wang Jia represents a new generation of researchers equipped with the computational tools, engineering insight, and intellectual rigor to solve complex problems at the intersection of AI and fluid dynamics. Her rapid progression through academic ranks, influential publications, and contributions to intelligent flow control technology demonstrate not only technical skill but also forward-thinking vision. She is especially deserving of recognition through the Women Researcher Award for her excellence in STEM, commitment to innovation, and strong potential for future impact in science and engineering.

 

 

 

Mr. Zeshan Ali | Engineering | Young Researcher Award

Mr. Zeshan Ali | Engineering | Young Researcher Award

Mr. Zeshan Ali | Engineering – Senior Researcher at International Water Management Institute, Pakistan


Zeshan Ali is a dynamic and skilled hydrologist and research officer with a robust academic and professional foundation in Water Resource Engineering and Agricultural Engineering. With diverse expertise ranging from hydrological modeling to remote sensing, his work addresses critical issues such as climate resilience, sustainable agriculture, and data-driven water management in South Asia. Currently serving as a Senior Research Officer at the International Water Management Institute (IWMI) in Pakistan, Zeshan is making impactful contributions to global initiatives like NEXUS Gains and Fragility, Conflict, and Migration by integrating scientific research with real-world water governance solutions. His blend of field-based experience, technical proficiency, and scholarly output has positioned him as an emerging expert in the fields of climate modeling and hydrology.

Profile Verified:

Orcid | Scopus

Education:

Zeshan earned his Master of Science in Water Resources Engineering from the University of Engineering and Technology, Lahore, in 2022, where he specialized in hydrological modeling under climate change scenarios. He previously obtained his Bachelor of Science in Agricultural Engineering from PMAS Arid Agriculture University, Rawalpindi, in 2018. His academic background combines theoretical depth with practical understanding, particularly in the applications of GIS, remote sensing, and statistical hydrology.

Experience:

Professionally, Zeshan Ali has steadily advanced through roles that span research, engineering design, and operational management. At IWMI, he has led efforts in installing and monitoring advanced field instruments such as Eddy Covariance Flux Towers and CTD divers, managing groundwater and carbon flux data for regional planning. He has also contributed to stakeholder training, climate impact assessments, and data analysis under projects funded by CGIAR and the World Bank. Prior to this, he worked as Assistant Hydraulic Design Engineer at MM Pakistan, focusing on hydropower and water conveyance infrastructure for the Kurram Tangi Dam. Earlier roles included research and field engineering with a focus on high-efficiency irrigation systems under the Punjab Irrigated-Agriculture Productivity Improvement Project (PIPIP), where he implemented sustainable water-saving techniques and solar energy integration for rural agricultural settings.

Research Interest:

Zeshan’s research interests lie at the intersection of water resources, climate science, and technology. His core expertise includes hydrological and hydraulic modeling, climate projections (CMIP6), flood prediction, sustainable agriculture, GIS, and AI-based data analysis. He is especially passionate about integrating climate modeling with watershed and river basin hydrology to support climate-resilient infrastructure and policies. His growing interest in machine learning and remote sensing highlights a modern, adaptive approach to traditional water resource challenges.

Awards and Recognition:

Zeshan has consistently been selected for specialized workshops, high-level consultative forums, and technical training programs across Pakistan and internationally. These include the IWMI Science Strategy Forum in Colombo, Sri Lanka, and multiple CGIAR-led workshops on groundwater management and integrated water resource strategies. His ability to organize, lead, and train at multi-stakeholder events reflects recognition of his scientific communication skills and technical competence.

Selected Publications 📚:

  1. 🌊 Z. Ali et al. (2023). “Hydrological Response Under CMIP6 Climate Projection in Astore River Basin, Pakistan,” Journal of Mountain Science, Springer. [Cited by: 9]
  2. 🌱 MU Masood, Z. Ali et al. (2023). “Appraisal of Landcover and Climate Change Impact on Water Resources,” Journal of Water, MDPI. [Cited by: 5]
  3. 🔮 Z. Ali et al. (2022). “Future Streamflow Prediction Using UBC Watershed Model,” 2nd Int. Conf. on Hydrology and Water Resources. [Cited by: 2]
  4. ❄️ I.U. Khan, Z. Ali et al. (2023). “Evaluation and Mapping of Snow Characteristics in Astore Basin,” Atmosphere, MDPI. [Cited by: 4]
  5. 🌨️ I. Khan, Z. Ali et al. (2022). “Evaluation of Snow Characteristics in Astore Basin,” Conf. on Sustainable Water Resources Management.
  6. 🏞️ M. Sharjeel, Z. Ali et al. (2022). “Impacts of Climate and Land Use Changes at Rawal Dam,” SWRM 2022.
  7. 🔍 M. Rashid, Z. Ali et al. (In Prep). “Robustness of Hydrological Models & ML Techniques for Extreme Events.”

Conclusion:

Zeshan Ali’s career is a testament to applied hydrological science’s critical role in climate adaptation and sustainable resource management. His contributions span the design of innovative monitoring systems, predictive hydrological models, and field training programs that empower communities and policymakers alike. Through a blend of research, engineering, and community engagement, Zeshan has emerged as a leader in water-related climate resilience. As he continues to advance both academic and field-based frontiers, his work holds promise for shaping sustainable futures across vulnerable ecosystems and transboundary water systems. His dedication, expertise, and passion make him an exemplary nominee for any recognition in the environmental and water sciences domain.

 

 

Dr. Mariam Darestani | Environmental Engineering | Best Researcher Award

Dr. Mariam Darestani | Environmental Engineering | Best Researcher Award

Dr. Mariam Darestani | Environmental Engineering – Western Sydney University, Kingswood, Australia

Dr. Mariam Darestani is a highly accomplished academic and researcher with a diverse and impactful career in the field of engineering. With a PhD in Engineering from the University of Sydney, Dr. Darestani has made significant contributions to the development of innovative materials and sustainable technologies, particularly in the areas of water purification, sustainable agriculture, and polymer engineering. She is currently serving as a Senior Lecturer at Western Sydney University (WSU), where she is also an Academic Program Advisor for various undergraduate engineering programs. As a Fellow of the Higher Education Academy (FHEA), she has a strong commitment to enhancing the academic experience for students through innovative curriculum development and research.

Her academic journey is marked by numerous awards, including the prestigious Amelia Earhart Fellowship from Zonta International and several Excellence in Research Awards from the University of Sydney. With a background in Polymer Engineering, Dr. Darestani has worked across various sectors, applying her research to practical solutions in industry. In addition to her teaching and research roles, she has held leadership positions in various academic and industry-related initiatives, further cementing her reputation as a trailblazer in her field.

Profile Verified:

Google Scholar

Education:

Dr. Darestani’s academic foundation is robust, beginning with a Bachelor’s degree in Polymer Engineering (Honours) from Tehran Polytechnic University. She pursued her Master’s in Engineering (Polymer) from the Iran Polymer and Petrochemical Institute before embarking on doctoral studies at the University of Sydney, where she earned her PhD in Engineering. To further enhance her expertise in academic practice, she completed the Graduate Certificate in Academic Practice at Queensland University of Technology (QUT), which underpins her dedication to improving teaching methodologies. Her academic qualifications are complemented by ongoing professional development, including various courses aimed at enhancing her supervisory and leadership skills in academia.

Experience:

Dr. Darestani’s career has spanned multiple research and academic positions, which have contributed to her expertise in sustainable engineering solutions. She has been a Senior Lecturer at Western Sydney University since 2019, where she has also been involved in several leadership roles, such as Academic Program Advisor for the Undergraduate Advanced Manufacturing, Materials, Mechanical, and Robotic & Mechatronic Engineering programs. Her previous roles include serving as an Advance Queensland Research Fellow at Queensland University of Technology, where she focused on the development of novel materials and technologies for sustainable living. Her postdoctoral work at the University of Technology Sydney (UTS) and the University of Sydney has further enriched her ability to collaborate across academic and industrial sectors, providing valuable insights into the intersection of research, teaching, and practical engineering applications.

Research Interests:

Dr. Darestani’s research interests are primarily focused on developing innovative products and materials aimed at sustainable living. Her work is centered on the application of nanotechnology, sustainable water treatment, and the creation of advanced materials for agricultural and environmental purposes. She has a particular interest in water resource management, exploring the potential of zeolite-based products and other novel materials for addressing environmental challenges. Her research is interdisciplinary, drawing from fields such as polymer engineering, environmental sustainability, and nanotechnology to create practical solutions that benefit both industries and communities.

Awards:

Dr. Darestani has received numerous accolades and awards for her outstanding contributions to research and innovation. Some of her notable achievements include winning the EDBE Research Impact Award in 2024 and 2023 at Western Sydney University, as well as being named the Researcher of the Year through Industry Partnership in 2023. Her dedication to sustainability has earned her recognition in prestigious awards such as the Queensland Women in STEM Prize and the AMP Tomorrow Maker Award. Additionally, she was shortlisted for the Green Globe Award by the NSW government in 2019 and has received several industry fellowship awards, highlighting her ability to bridge the gap between academia and industry.

Publications:

Dr. Darestani has authored and co-authored several peer-reviewed journal articles and conference papers that have had a significant impact on the field. Some of her recent publications include:

  1. Javan, K., & Darestani, M. (2024). Evaluating the environmental sustainability of a key crop in a crucial area: Analyzing the effects of climate change on agriculture, Heliyon. 🌱 (Cited by: 10+)
  2. Javan, K., & Darestani, M. (2024). Assessing environmental sustainability of a vital crop in a critical region using the SWAT model, Heliyon 10(3). 🌍 (Cited by: 8)
  3. Amari, S., Darestani, M., & Millar, G. (2024). Engineering and Life Cycle Assessment of Sustainable Zeolite-Based Geopolymer Incorporating Blast Furnace Slag, Sustainability 16(1), 440. ♻️ (Cited by: 12)
  4. Javan, K., Altaee, A., BaniHashemi, S., & Darestani, M. (2023). A review of interconnected challenges in the water-energy-food nexus: Urban pollution perspective towards sustainable development, Science of The Total Environment. 🌿 (Cited by: 20)
  5. Javan, K., Mirabi, M., & Darestani, M. (2023). Enhancing environmental sustainability in a critical region: Climate change impacts on agriculture and tourism, Civil Engineering Journal. 🌎 (Cited by: 15)

Conclusion:

Dr. Mariam Darestani is an exemplary figure in the field of engineering, blending academic rigor with practical, sustainable solutions. Her commitment to innovation in water resource management, sustainable materials, and engineering education has earned her a prominent place in both academic and industrial circles. With a proven track record of securing substantial research funding and delivering impactful projects, Dr. Darestani continues to make significant strides in advancing sustainable engineering practices. Through her work, she not only contributes to the academic community but also to the development of technologies that have a lasting, positive impact on the environment and society. Her contributions, both in research and teaching, make her a deserving candidate for recognition in any award nomination.

 

 

 

Dr. Xin Zhou | Engineering | Best Researcher Award

Dr. Xin Zhou | Engineering | Best Researcher Award

Dr. Xin Zhou | Engineering – Lecture at Shanghai University of Electric Power, China

Dr. Xin Zhou is a passionate and emerging researcher in the field of automation engineering, currently serving as a lecturer at Shanghai University of Electric Power. With a solid international educational background and hands-on research in robotics and intelligent optimization, he brings both academic insight and practical relevance to his work. Dr. Zhou has focused his career on robotic path planning, artificial intelligence in manufacturing, and intelligent control systems. His rapid contributions to both the theoretical foundations and industrial applications of intelligent robotics make him a promising candidate for the Best Researcher Award.

Education:

Dr. Zhou’s academic path spans several prestigious institutions across China, the UK, and Australia. He received his Ph.D. in Control Science and Engineering from East China University of Science and Technology in 2022, concentrating on intelligent algorithms and robotic optimization. He earned his Master’s degree in Digital Systems and Communication Engineering from the Australian National University (2016–2017), developing skills in communication and embedded systems. His undergraduate training was jointly conducted at the University of Liverpool and Xi’an Jiaotong-Liverpool University (2011–2015), where he majored in Electrical Engineering and Automation, providing a strong technical foundation for his current work.

Profile:

Orcid

Experience:

Since August 2022, Dr. Zhou has been working as a lecturer at the School of Automation Engineering, Shanghai University of Electric Power. In this position, he teaches undergraduate and graduate courses while engaging in active research. He has participated in two completed projects funded by the National Natural Science Foundation of China (NSFC), focusing on welding robotics and production scheduling under uncertainty. Dr. Zhou is also leading a current industry-funded research project on motion planning algorithms for robotic systems used in complex maintenance tasks. His combination of academic research and industrial cooperation demonstrates a comprehensive and practical research profile.

Research Interest:

Dr. Zhou’s primary research interests include robotic path planning, multi-objective optimization, intelligent algorithms, and smart manufacturing systems. He specializes in developing evolutionary algorithms and applying them to real-world robotic control challenges, especially in arc welding scenarios. His work aims to enhance the intelligence, flexibility, and adaptability of autonomous robotic systems, contributing to Industry 4.0 initiatives. He is particularly known for his work on decomposition-based optimization methods and real-time obstacle avoidance strategies.

Awards:

While Dr. Zhou is still early in his career, he has already made notable contributions to applied innovation, as evidenced by three Chinese patents in the area of robotic path planning. These patents include novel systems and methods for arc welding robot navigation and gantry-type robotic control, with the most recent filed in December 2023. His work in patented technologies reflects his practical approach to academic research and commitment to industry-aligned solutions.

Publications:

Dr. Zhou has authored and co-authored several influential journal papers. Below are seven key publications, with emojis, journal names, publication years, and citation notes:

📘 A decomposition-based multiobjective evolutionary algorithm with weight vector adaptation – Swarm and Evolutionary Computation, 2021. Cited for its novel adaptive mechanism in multi-objective optimization.

🤖 An approach for solving the three-objective arc welding robot path planning problem – Engineering Optimization, 2023. Frequently referenced in robotics and optimization studies.

🛠️ Online obstacle avoidance path planning and application for arc welding robot – Robotics and Computer-Integrated Manufacturing, 2022. Cited in real-time control literature.

🔍 A Collision-free path planning approach based on rule-guided lazy-PRM with repulsion field for gantry welding robots – Robotics and Autonomous Systems, 2024. Recent paper gaining citations in dynamic path planning.

📚 A survey of welding robot intelligent path optimization – Journal of Manufacturing Processes, 2021. Serves as a key reference for scholars in the welding robotics field.

🧠 Rule-based adaptive optimization strategies in robotic welding systems – Under review, targeted at IEEE Transactions on Industrial Informatics.

🔄 Multi-objective task sequencing and trajectory planning under dynamic constraints – Manuscript in progress for Journal of Intelligent Manufacturing.

Conclusion:

Dr. Xin Zhou is a standout young researcher whose work in robotic path planning and intelligent optimization has already made a significant impact in the field of automation. His research integrates high-level algorithm development with real-world engineering applications, making his contributions both academically valuable and practically useful. With a growing body of well-cited publications, involvement in both national and industry-sponsored projects, and active innovation through patents, Dr. Zhou is a strong candidate for the Best Researcher Award. His trajectory reflects both dedication and innovation, and he continues to show strong potential to lead transformative work in intelligent automation in the years ahead.

 

 

 

Iman Khosravi | Engineering | Best Researcher Award

Dr. Iman Khosravi | Engineering | Best Researcher Award 

Assistant Professor at Department of Geomatics Engineering, Faculty of Civil Engineering & Transportation, University of Isfahan, Iran 

Dr. Iman Khosravi is an Assistant Professor at the University of Isfahan, Iran, in the Department of Geomatics Engineering, Faculty of Civil Engineering and Transportation. A specialist in Remote Sensing and Photogrammetry, he has made substantial academic and scientific contributions through research, teaching, and interdisciplinary collaborations. He has actively participated in national and industry-based projects and is recognized for his leadership in academic program development and innovation. His scientific expertise is grounded in image processing, pattern recognition, and surveying technologies, where he continues to shape the future of geomatics education and research.

profile

google scholar

Education

Dr. Khosravi obtained his Ph.D. in Remote Sensing Engineering in 2018 from the University of Tehran, one of Iran’s leading institutions for advanced studies in geographical sciences. Following his doctoral completion, he further refined his research skills as a postdoctoral researcher in the Department of Remote Sensing & GIS, Faculty of Geography, University of Tehran. This strong academic foundation enabled him to pursue a comprehensive academic and research career with a focus on both theoretical knowledge and applied innovations.

Experience

Currently serving as an Assistant Professor at the University of Isfahan, Dr. Khosravi brings years of practical and academic experience in the fields of geomatics, surveying, and remote sensing. His academic role is complemented by his service in various departmental and institutional leadership positions, including roles as Educational Deputy, Research Deputy, and Deputy of the Industry Relations Office. He also directs the Specialized Career Guidance and Employment Center, fostering industry-academia connections. His background includes supervising national projects and offering consultancy in remote sensing and surveying engineering initiatives.

Research Interest

Dr. Khosravi’s research is centered on the integration and advancement of radar and optical remote sensing, photogrammetry, and high-resolution image processing for geospatial applications. He is especially focused on the development of object-oriented image analysis and the application of pattern recognition techniques to spatial data. His work often explores the synergy between theoretical models and real-world application, including environmental monitoring and urban infrastructure assessment through advanced survey techniques. He is also committed to innovation in unmanned aerial vehicle (UAV) photogrammetry and educational methods in analytical photogrammetry.

Award

Dr. Khosravi is nominated for the Best Researcher Award in recognition of his remarkable publication record, multidisciplinary contributions, and academic leadership. With more than 25 peer-reviewed journal articles indexed in SCI and Scopus, over 300 citations, two published textbooks with ISBNs, and involvement in five research projects, he exemplifies academic excellence. His continued efforts to blend scientific rigor with educational advancement and practical implementation position him as a leader in the geomatics research community.

Publication

Among his published work, the following are selected key contributions:

“Urban Green Space Classification Using Object-Oriented Techniques” (2017, Remote Sensing Letters) – Cited by 32 articles.

“Fusion of Radar and Optical Imagery for Surface Change Detection” (2018, International Journal of Applied Earth Observation and Geoinformation) – Cited by 27 articles.

“Object-Based Image Analysis in Agricultural Monitoring” (2019, GIScience & Remote Sensing) – Cited by 19 articles.

“UAV-Based Photogrammetry for Urban Infrastructure Mapping” (2020, ISPRS International Journal of Geo-Information) – Cited by 15 articles.

“Pattern Recognition in High-Resolution Satellite Imagery” (2021, Sensors) – Cited by 11 articles.

“Integration of GIS and Remote Sensing for Land Use Planning” (2022, Land Use Policy) – Cited by 9 articles.

“Machine Learning Approaches in Remote Sensing Classification” (2023, Computers & Geosciences) – Cited by 6 articles.

Each of these articles demonstrates his commitment to advancing remote sensing techniques and their applications across diverse fields, reflecting strong interdisciplinary relevance.

Conclusion

Dr. Iman Khosravi exemplifies the qualities of a top-tier researcher through his commitment to high-impact research, publication excellence, academic authorship, and service to the scholarly and professional communities. His holistic contribution to the fields of remote sensing and geomatics engineering makes him an outstanding candidate for the Best Researcher Award. His continued pursuit of innovation and mentorship ensures that his influence extends beyond publications—nurturing future scholars and fostering cross-sector collaboration.

Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering – Civil Engineering at Western Sydney University, Australia

Kazem Javan is an accomplished researcher and PhD student in Civil and Environmental Engineering at Western Sydney University. He is passionate about advancing sustainable infrastructure solutions through innovative engineering approaches that address environmental challenges. His research focuses on developing durable, acid-resistant materials for sewer pipe rehabilitation, emphasizing the use of sustainable, recycled materials to reduce CO₂ emissions. Kazem is also involved in cutting-edge projects related to carbon-absorbing concrete, aiming to contribute to the circular economy. He brings a wealth of experience in environmental engineering, particularly in water management and resource efficiency, which he integrates into his academic work and professional practice.

Profile:

Google Scholar

Education:


Kazem Javan’s educational journey is rooted in Civil and Environmental Engineering. He is currently pursuing his PhD in Civil Engineering at Western Sydney University, with a focus on developing sustainable materials for infrastructure. Before this, Kazem completed a Master’s in Civil Engineering with a specialization in Water Engineering, where his research examined the impacts of climate change on water resources. His academic foundation began with a Bachelor’s in Civil Engineering, which provided him with a strong grasp of structural mechanics, geotechnical engineering, and transportation systems. This comprehensive academic background forms the foundation for his innovative work in sustainable engineering.

Experience:


Kazem Javan has significant experience in both the academic and professional domains of civil and environmental engineering. He currently works as an Environmental and Civil Engineering Manager, where he leads projects focusing on sustainable infrastructure development and low-emission technologies. In this role, he ensures compliance with environmental regulations and integrates renewable resource utilization in engineering practices. Previously, Kazem was a Technical Supervisor at Ideh Afroz Aria Company, where he supervised water infrastructure projects and integrated climate resilience strategies. His broad experience allows him to combine theoretical knowledge with practical solutions in real-world applications, enhancing both the sustainability and efficiency of civil engineering projects.

Research Interests:

Kazem’s research interests are centered around sustainable engineering solutions, focusing on the development of materials and systems that contribute to environmental preservation and climate change mitigation. His current research explores the use of recycled materials, such as broken glass and mine by-products, for sewer pipe rehabilitation and the creation of durable, acid-resistant coatings. Kazem is also dedicated to advancing carbon-absorbing concrete technologies and is actively involved in the CRC SmartCrete project, where he explores the potential of waste minerals to enhance sustainability in construction. His work in environmental engineering spans areas such as water resource management, renewable energy, waste management, and the water-energy-food nexus, all aimed at reducing environmental impact.

Awards:


Kazem Javan has been recognized for his exceptional academic and professional achievements. He was awarded the SmartCrete CRC and Western Sydney University Postgraduate Research Scholarship, which supports his ongoing research into sustainable infrastructure and material innovations. This award highlights Kazem’s commitment to advancing sustainability in the engineering field, particularly through the development of eco-friendly solutions that can have a lasting impact on construction practices and environmental protection. His ability to combine technical expertise with a strong focus on sustainability has earned him the recognition he deserves.

Publications:


Kazem has contributed significantly to the academic community, publishing several impactful papers in prestigious journals. His work addresses critical issues in water resource management, environmental sustainability, and the effects of climate change on infrastructure. Below are some of his notable publications:

  1. Javan, K., Banihashemi, S., Nazari, A., et al. (2025). Coupled SWMM-MOEA/D for Multi-Objective Optimization of Low Impact Development in Urban Stormwater Systems. Journal of Hydrology 🌍 (Cited by: 12)
  2. Javan, K., Darestani, M., Ibrar, I., et al. (2025). Interrelated Issues within the Water-Energy-Food Nexus with a Focus on Environmental Pollution for Sustainable Development: A Review. Environmental Pollution 🌱 (Cited by: 9)
  3. Javan, K., Altaee, A., BaniHashemi, S., et al. (2024). A Review of Interconnected Challenges in the Water–Energy–Food Nexus: Urban Pollution Perspective towards Sustainable Development. Science of the Total Environment 🏙️ (Cited by: 16)
  4. Javan, K., & Darestani, M. (2024). Assessing Environmental Sustainability of a Vital Crop in a Critical Region: Investigating Climate Change Impacts on Agriculture Using the SWAT Model and HWA Method. Heliyon 🌾 (Cited by: 5)
  5. Javan, K., Altaee, A., Darestani, M., et al. (2023). Assessing the Water–Energy–Food Nexus and Resource Sustainability in the Ardabil Plain: A System Dynamics and HWA Approach. Water 💧 (Cited by: 20)
  6. Javan, K., Mirabi, M., Hamidi, S. A., et al. (2023). Enhancing Environmental Sustainability in a Critical Region: Climate Change Impacts on Agriculture and Tourism. Civil Engineering Journal 🏗️ (Cited by: 3)
  7. Javan, K., Lialestani, M. R. F. H., Ashouri, H., & Moosavian, N. (2015). Assessment of the Impacts of Nonstationarity on Watershed Runoff Using Artificial Neural Networks: A Case Study in Ardebil, Iran. Modeling Earth Systems and Environment 🌍 (Cited by: 8)

Conclusion:


Kazem Javan is an outstanding candidate for the “Best Researcher Award,” thanks to his groundbreaking work in sustainable engineering, water management, and climate change mitigation. His dedication to creating environmentally friendly materials and improving construction practices positions him as a leader in his field. With a strong academic background, extensive professional experience, and a proven track record of impactful research, Kazem continues to make significant contributions to the engineering community. His work not only addresses pressing global environmental issues but also sets the stage for a more sustainable future in civil and environmental engineering. His commitment to integrating innovative solutions into practice makes him highly deserving of this prestigious recognition.