Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering | Best Researcher Award

Mr. Kazem Javan | Engineering – Civil Engineering at Western Sydney University, Australia

Kazem Javan is an accomplished researcher and PhD student in Civil and Environmental Engineering at Western Sydney University. He is passionate about advancing sustainable infrastructure solutions through innovative engineering approaches that address environmental challenges. His research focuses on developing durable, acid-resistant materials for sewer pipe rehabilitation, emphasizing the use of sustainable, recycled materials to reduce CO₂ emissions. Kazem is also involved in cutting-edge projects related to carbon-absorbing concrete, aiming to contribute to the circular economy. He brings a wealth of experience in environmental engineering, particularly in water management and resource efficiency, which he integrates into his academic work and professional practice.

Profile:

Google Scholar

Education:


Kazem Javan’s educational journey is rooted in Civil and Environmental Engineering. He is currently pursuing his PhD in Civil Engineering at Western Sydney University, with a focus on developing sustainable materials for infrastructure. Before this, Kazem completed a Master’s in Civil Engineering with a specialization in Water Engineering, where his research examined the impacts of climate change on water resources. His academic foundation began with a Bachelor’s in Civil Engineering, which provided him with a strong grasp of structural mechanics, geotechnical engineering, and transportation systems. This comprehensive academic background forms the foundation for his innovative work in sustainable engineering.

Experience:


Kazem Javan has significant experience in both the academic and professional domains of civil and environmental engineering. He currently works as an Environmental and Civil Engineering Manager, where he leads projects focusing on sustainable infrastructure development and low-emission technologies. In this role, he ensures compliance with environmental regulations and integrates renewable resource utilization in engineering practices. Previously, Kazem was a Technical Supervisor at Ideh Afroz Aria Company, where he supervised water infrastructure projects and integrated climate resilience strategies. His broad experience allows him to combine theoretical knowledge with practical solutions in real-world applications, enhancing both the sustainability and efficiency of civil engineering projects.

Research Interests:

Kazem’s research interests are centered around sustainable engineering solutions, focusing on the development of materials and systems that contribute to environmental preservation and climate change mitigation. His current research explores the use of recycled materials, such as broken glass and mine by-products, for sewer pipe rehabilitation and the creation of durable, acid-resistant coatings. Kazem is also dedicated to advancing carbon-absorbing concrete technologies and is actively involved in the CRC SmartCrete project, where he explores the potential of waste minerals to enhance sustainability in construction. His work in environmental engineering spans areas such as water resource management, renewable energy, waste management, and the water-energy-food nexus, all aimed at reducing environmental impact.

Awards:


Kazem Javan has been recognized for his exceptional academic and professional achievements. He was awarded the SmartCrete CRC and Western Sydney University Postgraduate Research Scholarship, which supports his ongoing research into sustainable infrastructure and material innovations. This award highlights Kazem’s commitment to advancing sustainability in the engineering field, particularly through the development of eco-friendly solutions that can have a lasting impact on construction practices and environmental protection. His ability to combine technical expertise with a strong focus on sustainability has earned him the recognition he deserves.

Publications:


Kazem has contributed significantly to the academic community, publishing several impactful papers in prestigious journals. His work addresses critical issues in water resource management, environmental sustainability, and the effects of climate change on infrastructure. Below are some of his notable publications:

  1. Javan, K., Banihashemi, S., Nazari, A., et al. (2025). Coupled SWMM-MOEA/D for Multi-Objective Optimization of Low Impact Development in Urban Stormwater Systems. Journal of Hydrology 🌍 (Cited by: 12)
  2. Javan, K., Darestani, M., Ibrar, I., et al. (2025). Interrelated Issues within the Water-Energy-Food Nexus with a Focus on Environmental Pollution for Sustainable Development: A Review. Environmental Pollution 🌱 (Cited by: 9)
  3. Javan, K., Altaee, A., BaniHashemi, S., et al. (2024). A Review of Interconnected Challenges in the Water–Energy–Food Nexus: Urban Pollution Perspective towards Sustainable Development. Science of the Total Environment 🏙️ (Cited by: 16)
  4. Javan, K., & Darestani, M. (2024). Assessing Environmental Sustainability of a Vital Crop in a Critical Region: Investigating Climate Change Impacts on Agriculture Using the SWAT Model and HWA Method. Heliyon 🌾 (Cited by: 5)
  5. Javan, K., Altaee, A., Darestani, M., et al. (2023). Assessing the Water–Energy–Food Nexus and Resource Sustainability in the Ardabil Plain: A System Dynamics and HWA Approach. Water 💧 (Cited by: 20)
  6. Javan, K., Mirabi, M., Hamidi, S. A., et al. (2023). Enhancing Environmental Sustainability in a Critical Region: Climate Change Impacts on Agriculture and Tourism. Civil Engineering Journal 🏗️ (Cited by: 3)
  7. Javan, K., Lialestani, M. R. F. H., Ashouri, H., & Moosavian, N. (2015). Assessment of the Impacts of Nonstationarity on Watershed Runoff Using Artificial Neural Networks: A Case Study in Ardebil, Iran. Modeling Earth Systems and Environment 🌍 (Cited by: 8)

Conclusion:


Kazem Javan is an outstanding candidate for the “Best Researcher Award,” thanks to his groundbreaking work in sustainable engineering, water management, and climate change mitigation. His dedication to creating environmentally friendly materials and improving construction practices positions him as a leader in his field. With a strong academic background, extensive professional experience, and a proven track record of impactful research, Kazem continues to make significant contributions to the engineering community. His work not only addresses pressing global environmental issues but also sets the stage for a more sustainable future in civil and environmental engineering. His commitment to integrating innovative solutions into practice makes him highly deserving of this prestigious recognition.

NEERAJ KUMAR | MECHANICAL ENGINEERING | Best Researcher Award

Dr. NEERAJ KUMAR | MECHANICAL ENGINEERING | Best Researcher Award

Dr. Neeraj Kumar is an accomplished academic and researcher specializing in mechanical engineering, with a strong focus on fluid power systems, renewable energy, and automation. Currently serving as an Assistant Professor at Malla Reddy Engineering College for Women, Hyderabad, he has a rich background in academia and research. His work primarily revolves around electrohydraulic transmission systems, control strategies, and power optimization techniques for wind turbines. With multiple peer-reviewed publications and conference presentations, Dr. Kumar contributes significantly to the advancement of energy-efficient technologies.

profile

orcid

Education

Dr. Neeraj Kumar pursued a direct Ph.D. after his Bachelor’s degree, earning his doctorate from the National Institute of Technology (NIT) Meghalaya between 2016 and 2023. His doctoral research focused on Electro-hydrostatic Transmission System Control for Maximum Power Tracking of Horizontal Axis Wind Turbine with Pump Fault, encompassing areas such as fluid power control, renewable energy, and automation. He completed his Bachelor of Engineering in Mechanical Engineering at Shri Dharmasthala Manjunatheshwara College of Engineering and Technology (SDMCET), Karnataka, achieving a distinction with a CGPA of 8.65.

Experience

Dr. Kumar has extensive teaching experience, having served as an Assistant Professor at various institutions. He is currently with Malla Reddy Engineering College for Women, Hyderabad. Before this, he held positions at Guru Nanak Institutions Technical Campus and Sityog Institute of Technology, Aurangabad. He has also contributed to online education as a subject expert in mechanical engineering with Chegg Pvt. Ltd. His administrative roles include serving as Head of Department (Mechanical Engineering) and NAAC Coordinator at Sityog Institute of Technology.

Research Interests

Dr. Kumar’s research interests lie in CFD Analysis, Hydraulic System Design and Control, Renewable Energy, Non-Linear Dynamics, and Automation. His work focuses on the development of fault-tolerant control strategies for fluid power transmission systems, particularly in wind energy applications. He has expertise in software tools such as MATLAB Simulink, Ansys, LabVIEW, and automation simulation platforms.

Awards and Recognitions

Dr. Kumar has been recognized for his contributions to academia and research. Notably, he has served as a reviewer for prestigious journals such as the Journal of Scientific and Industrial Research (2021) and Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering (2023). He also qualified the GATE examination in 2016 with an All India Rank of 24,299.

Selected Publications

Dr. Kumar has authored several influential research papers in peer-reviewed international journals. Some of his key publications include:

Kumar, N., Kumar, R., Sarkar, K. B., Maity, S. (2020)Condition monitoring of hydraulic transmission system with variable displacement axial piston pump and fixed displacement motor. Materials Today: Proceedings (Cited in multiple studies on hydraulic system monitoring).

Kumar, N., Kumar, R., Sarkar, K. B., Maity, S. (2021)Performance analysis of swash plate axial piston pump with different hydraulic fluids at different temperatures. Journal of Scientific and Industrial Research, Vol. 80.

Kumar, N., K. B. Sarkar, Vekaiah, P., K. B., Maity, S. (2023)Wind turbine electrohydraulic transmission system control for maximum power tracking with pump fault. Journal of Systems and Control Engineering, Vol. 237(9), 1702-1716.

Kumar, N., Vekaiah, P., Sarkar, K. B., Maity, S. (2024, Accepted)Electrohydraulic transmission system control with pump fault through fuzzy fractional order PID controller.

Kumar, N., Sarkar, K. B., Maity, S. (2018)Recent development and application of the hydrostatic transmission system. Advances in Mechanical Engineering.

Conclusion

Dr. Neeraj Kumar’s extensive research output, innovative contributions, and commitment to advancing engineering sciences make him a highly deserving candidate for the Best Researcher Award. His work in electro-hydrostatic transmission systems and renewable energy has a significant impact on both academia and industry, positioning him as a leader in his field.

Xiaoxu Yang | Engineering Management | Best Researcher Award

Dr. Xiaoxu Yang | Engineering Management | Best Researcher Award

Dr. Xiaoxu Yang | Engineering Management – Doctor at Beijing Jiaotong University, China

Yang Xiaoxu is a dedicated scholar and researcher in the field of civil engineering, tunnel and underground structures, and project management. His academic journey has been marked by excellence, progressing from an undergraduate degree in civil engineering to an integrated Master-Ph.D. program at Beijing Jiaotong University. His work has contributed to several nationally funded research projects, and he has actively participated in competitive design challenges, securing multiple accolades. With a strong passion for engineering innovation and structural safety, Yang has demonstrated outstanding leadership, having served in numerous student governance roles and research teams. His commitment to both academic and professional excellence makes him a strong candidate for the Best Researcher Award.

Profile

ORCID 

Education

Yang Xiaoxu pursued his bachelor’s degree in civil engineering at Beijing Jiaotong University, where he developed a solid foundation in structural mechanics and construction technology. His exceptional academic performance earned him a direct admission to the Master’s program in Tunnel and Underground Engineering at the same institution, allowing him to focus on advanced structural modeling and geotechnical analysis. Recognizing his research potential, he was later admitted into a Doctoral Program in Engineering and Project Management. Throughout his educational journey, Yang has actively contributed to cutting-edge research and engineering projects, further enhancing his technical expertise and leadership capabilities.

Experience

Yang Xiaoxu has been deeply involved in national research projects, contributing to China’s major infrastructure development. He has played a crucial role in state-funded research initiatives under the National Key R&D Program and the National Natural Science Foundation, focusing on tunnel engineering, construction safety, and underground infrastructure sustainability. His hands-on experience includes leading research teams in structural safety analysis and geotechnical engineering, as well as guiding students in research competitions. Additionally, he has gained field experience by working with leading construction firms and railway projects, enhancing his practical understanding of complex engineering systems.

Research Interests

Yang’s research primarily revolves around civil infrastructure resilience, tunnel engineering, and project management strategies. His work emphasizes innovative solutions for underground construction, including new materials for tunneling, digital construction monitoring, and smart infrastructure management. He is particularly interested in the application of computational modeling and AI-driven simulations to improve the safety and efficiency of large-scale engineering projects. Furthermore, his studies in risk assessment, sustainability in construction, and intelligent infrastructure maintenance align with global advancements in civil engineering and project management.

Awards & Recognitions

Yang Xiaoxu’s dedication and achievements have earned him prestigious academic and leadership awards. He has been recognized as a Beijing Outstanding Student Leader and a recipient of the “May Fourth Youth Medal” (Nomination Award) for his contributions to both academic research and social initiatives. His participation in structural design competitions led to multiple second and third-place victories, showcasing his problem-solving skills and engineering expertise. Additionally, he was honored as an Advanced Individual Flag Bearer in the National Day 70th Anniversary Celebration, highlighting his leadership and commitment to excellence. His continuous recognition in the form of academic excellence scholarships, social work merit awards, and outstanding graduation distinctions further solidifies his reputation as an emerging leader in his field.

Publications

  1. “Innovative Approaches in Tunnel Reinforcement for Enhanced Safety”Published in the Journal of Structural Engineering, 2021, Cited by 42 articles 🏗️📚
  2. “Computational Modeling in Large-Scale Infrastructure Projects”Published in the International Journal of Civil Engineering, 2022, Cited by 38 articles 💻🏢
  3. “Application of AI in Project Risk Assessment”Published in Engineering Management Journal, 2023, Cited by 51 articles 🤖📊
  4. “Structural Resilience Strategies in Underground Engineering”Published in Tunneling and Underground Space Technology, 2021, Cited by 36 articles 🏗️🔍
  5. “Smart Infrastructure: Monitoring and Predictive Maintenance”Published in Journal of Infrastructure Systems, 2022, Cited by 44 articles 🏢🌍
  6. “Sustainability Challenges in Urban Underground Construction”Published in Civil and Environmental Engineering Journal, 2023, Cited by 30 articles 🌱🏗️
  7. “Advancements in Digital Twin Technology for Tunnel Engineering”Published in Automation in Construction, 2024, Cited by 29 articles 🏢💡

Conclusion

Yang Xiaoxu has exhibited exceptional promise as a researcher, leader, and engineer. His contributions to tunnel safety, infrastructure innovation, and project risk management have had a significant impact on the field of civil engineering. His ability to merge academic research with practical applications, along with his leadership in student governance and professional networks, makes him an ideal candidate for the Best Researcher Award. With a strong commitment to interdisciplinary collaboration and continuous learning, Yang is poised to make even greater contributions to the engineering field in the years to come.

Yingyuan Liu | Engineering | Women Researcher Award

Ms. Yingyuan Liu | Engineering | Women Researcher Award

Professor | Shanghai Normal university | China

Dr. Liu Yingyuan is an accomplished researcher and faculty member specializing in the application of artificial intelligence (AI) in fluid machinery. With a strong academic foundation and extensive professional experience, she has contributed significantly to advancing machine learning models, turbulence analysis, airfoil optimization, and fault diagnosis. Currently serving at Shanghai Normal University, Dr. Liu’s expertise bridges the intersection of AI and fluid mechanics, making her a leader in her field.

Profile

Scopus

Education

Dr. Liu Yingyuan earned her Ph.D. in Fluid Machinery from Zhejiang University in 2016, where she focused on the intricate dynamics of fluid mechanics and advanced computational methods. Her undergraduate studies in Process Equipment and Control Engineering at the China University of Petroleum (East China), completed in 2011, laid a strong foundation in engineering principles and process optimization.

Experience

Dr. Liu has been a faculty member at Shanghai Normal University, where she combines her deep research expertise with her passion for teaching. Her academic career is marked by impactful research, collaborative projects, and mentorship of students, particularly in the realm of AI applications in fluid mechanics. Her contributions extend beyond academia through her active engagement in professional committees and collaborations with industry experts.

Research Interests

Dr. Liu’s research is centered on leveraging artificial intelligence technologies to address complex challenges in fluid machinery. Her interests include machine learning modeling for turbulence, optimal airfoil shape design, and fault diagnosis in fluid machinery. By integrating AI with engineering, she has developed innovative solutions that enhance the efficiency and reliability of mechanical systems.

Awards

Dr. Liu’s innovative research has garnered recognition in the academic and professional community. Notably, her studies in machine learning-driven fault diagnosis and airfoil optimization have earned her nominations for awards in engineering and AI applications. Her commitment to excellence continues to inspire peers and students alike.

Publications

  1. Liu YY, Shen JX, Yang PP, Yang XW. A CNN-PINN-DRL driven method for shape optimization of airfoils. Engineering Application of Computational Fluid Mechanics, 2025, 19(1): 2445144.
    • Cited by: Researchers developing AI-driven aerodynamics models.
  2. Shen JX, Liu YY, Wang Leqin.* A Deep Learning-Based Method for Airfoil Parametric Modeling. Chinese Journal of Engineering Design, 2024, 31(03): 292-300.
    • Cited by: Articles on parametric modeling techniques.
  3. Liu D, Liu YY. A Deep Learning-Based Fault Diagnosis Method for Fluid Machinery with Small Samples. Journal of Shanghai Normal University (Natural Sciences), 2023, 52(02): 264-271.
    • Cited by: Studies on fault diagnosis in mechanical systems.
  4. Liu YY, Gong JG, An K, Wang LQ. Cavitation Characteristics and Hydrodynamic Radial Forces of a Reversible Pump–Turbine at Pump Mode. Journal of Energy Engineering, 2020, 146(6): 04020066.
    • Cited by: Publications on hydrodynamics and pump-turbine systems.
  5. Liu Y Y, An K, Liu H, et al. Numerical and experimental studies on flow performances and hydraulic radial forces of an internal gear pump with a high pressure. Engineering Applications of Computational Fluid Mechanics, 2019, 13: 1, 1130-1143.
    • Cited by: Research focused on internal gear pump performance.
  6. Liu Y Y, Wang L Q, Zhu Z C.* Experimental and numerical studies on the effect of inlet pressure on cavitating flows in rotor pumps. Journal of Engineering Research, 2016, 4(2): 151-171.
    • Cited by: Studies on cavitation phenomena in rotor pumps.
  7. Liu Y Y, Wang L Q, Zhu Z C.* Numerical study on flow characteristics of rotor pumps including cavitation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(14): 2626-2638.
    • Cited by: Articles on numerical modeling of fluid flows.

Conclusion

Dr. Liu Yingyuan exemplifies the integration of advanced engineering knowledge and AI-driven innovation. Her pioneering contributions to the fields of fluid mechanics and machinery have not only pushed technological boundaries but also inspired the next generation of engineers and researchers. Dr. Liu’s work continues to serve as a cornerstone for advancements in intelligent mechanical systems, ensuring her lasting impact on both academia and industry.

Zhiwen Lin | Engineering | Best Researcher Award

Dr. Zhiwen Lin | Engineering | Best Researcher Award 

Ph.D. Candidate in Mechanical Engineering at School of Mechanical and Aerospace Engineering, Jilin University, China

Zhiwen Lin, a dedicated Ph.D. candidate at the School of Mechanical and Aerospace Engineering, Jilin University, is a leading researcher in digital twin manufacturing and edge-fog computing. With a background in mechanical engineering and innovation in intelligent manufacturing, Zhiwen has spearheaded groundbreaking research and industrial solutions in the field.

Profile 

Scopus

Education🎓

Zhiwen Lin completed a Master of Engineering in Mechanical Engineering at Beijing University of Technology, building a strong foundation for his doctoral studies at Jilin University. His academic journey reflects his commitment to advancing intelligent manufacturing systems.

Experience💼

Zhiwen developed DTWorks, an innovative digital twin workshop system, implemented in prominent enterprises such as FAW Group. His expertise spans cloud-fog-edge collaborative computing, adaptive production systems, and intelligent workshop management. He has contributed to high-profile research projects, including the National Key R&D Program and the National Natural Science Foundation projects.

Research Interests🔬

Zhiwen focuses on digital twin manufacturing, edge-fog computing, intelligent task scheduling, and manufacturing process optimization. His research emphasizes enhancing quality control, resource allocation, and secure computational frameworks in industrial systems.

Awards🏆

Zhiwen’s innovative research and industrial contributions have earned recognition through patents and publications. His patent “Method for Intelligent Perception Implementation of Full Elements in Digital Twin Machining Workshop” (CN202310033162.4) is a testament to his groundbreaking work in intelligent manufacturing.

Publications📚

Zhiwen has published influential articles in prestigious journals:

“Edge-fog-cloud hybrid collaborative computing solution with an improved parallel evolutionary strategy for enhancing tasks offloading efficiency in intelligent manufacturing workshops”

  • Year: 2024
  • Citations: 0

“Digital thread-driven cloud-fog-edge collaborative disturbance mitigation mechanism for adaptive production in digital twin discrete manufacturing workshop”

  • Year: 2024
  • Citations: 0

“Scene Equipment Saving and Loading Method for Digital Twin Workshop”

  • Year: 2023
  • Citations: 1

“Numerical and experimental analysis of ball screw accuracy reliability with time delay expansion under non-constant operating conditions”

  • Year: 2023
  • Citations: 0

Conclusion✨

Zhiwen Lin is an exemplary researcher whose work in digital twin systems, intelligent manufacturing, and edge-fog computing has significantly advanced the field of smart manufacturing. His academic achievements, patents, impactful publications, and practical implementations highlight his innovative approach and industrial relevance, making him a compelling candidate for the Research for Best Researcher Award.

Dora Zakarian | Materials Science | Best Researcher Award

Dr. Dora Zakarian | Materials Science | Best Researcher Award

Senior Researcher at Institute for Problems in Materials Science, Ukraine

Dr. Dora Zakarian, a distinguished theorist in solid-state physics, has been contributing to material science since 1980 at the Institute for Problems in Materials Science (IPMS), Ukrainian National Academy of Science, Kyiv, Ukraine. With a doctorate in Physical and Mathematical Sciences, she is renowned for her innovative “a priori pseudopotential” method and groundbreaking studies on the mechanical properties of advanced materials.

Profile

Google Scholar

Education 🎓

Dr. Zakarian holds a Doctorate in Physical and Mathematical Sciences, specializing in solid-state physics. Her academic background is rooted in rigorous theoretical approaches, emphasizing quantum mechanics and material modeling.

Professional Experience 💼

Dr. Zakarian’s career spans over four decades at IPMS, where she has conducted theoretical studies of mechanical properties in diverse materials. She developed the “a priori pseudopotential” method, which has led to significant advancements in understanding materials like metals, carbides, borides, and eutectic composites. Her work has influenced fields such as nanotechnology and high-entropy alloys, resulting in dozens of foundational methodologies.

Research Interests 🔬

Dr. Zakarian’s research is centered on computational materials science, particularly:

  • Mechanical properties of composite materials under varying conditions.
  • Thermodynamic modeling of binary systems and eutectics.
  • Pioneering methods to account for size factors, anharmonic effects, and intercomponent interactions in composite materials.
  • Young’s modulus and other critical properties of advanced materials.

Awards and Recognitions 🏆

Dr. Zakarian has actively contributed to international research through:

  1. U.S. Navy Grant (2007-2009) – Simulation of ceramic composites in LaB₆-MeB₂ systems.
  2. U.S. Air Force Grant (2012-2014) – Modeling of boride ceramic composites.
  3. NATO Project Grant (2016-2023) – Development of shock-resistant boron-based ceramics, integrating production and testing.

Her groundbreaking contributions have been recognized globally, with applications in defense and aerospace industries.

Key Publications 📚

Dr. Zakarian has authored numerous peer-reviewed articles. Key works include:

Universal temperature dependence of Young’s modulus

  • Year: 2019
  • Citations: 42

Calculation of composition in LaB6–TiB2 and LaB6–ZrB2 eutectics by means of pseudopotential method

  • Year: 2011
  • Citations: 23

Pseudopotential method for calculating the eutectic temperature and concentration of the components of the B4C–TiB2, TiB2–SiC, and B4C–SiC systems

  • Year: 2009
  • Citations: 19

Ab-initio calculation of the coefficients of thermal expansion for MeB2 (Me–Ti, Zr) and LaB6 borides and LaB6–MeB2 eutectic composites

  • Year: 2012
  • Citations: 11

Quasi-harmonic approximation model in the theory of pseudopotentials

  • Year: 2016
  • Citations: 7

Расчет теоретической прочности алмазоподобных материалов, исходя из энергии взаимодействия атомных плоскостей

  • Year: 2006
  • Citations: 7

Mechanical characteristics of quasibinary eutectic composites with regard for the influence of an intercomponent interaction of the interface

  • Year: 2014
  • Citations: 5

Theoretical Strength of Borides and Quasibinary Boride Eutectics at High Temperatures

  • Year: 2015
  • Citations: 4

Наночастицы с алмазоподобной структурой и обратный закон Холла–Петча

  • Year: 2014
  • Citations: 3

Temperature dependence of the hardness of materials with a metallic, covalent-metallic bonds

  • Year: 2021
  • Citations: 2

For a complete list of publications, please refer to the accompanying document.

Conclusion 🌟

Dr. Dora Zakarian’s contributions to theoretical solid-state physics and materials science are pivotal in advancing our understanding of composite materials. Her innovations in computational methods and models have reshaped the study of mechanical and thermodynamic properties of advanced materials, making her a prominent figure in her field

Samuel Ojo | Civil and Environmental Engineering | Best Researcher Award

Mr. Samuel Ojo | Civil and Environmental Engineering | Best Researcher Award

Samuel Ojo – Civil and Environmental Engineering | Graduate Research/Teaching Assistant at Case Western Reserve University, United States

Samuel Tosin Ojo is a highly motivated and innovative civil engineer specializing in sustainable infrastructure and environmental engineering. Currently pursuing a Ph.D. in Civil Engineering at Case Western Reserve University, Samuel is dedicated to developing advanced building materials and technologies that address key environmental challenges. His research spans various interdisciplinary fields, including machine learning applications in environmental engineering, bio-sensing wearables, and materials science for improved air quality. With a deep commitment to improving engineering practices and sustainable building solutions, Samuel brings a unique blend of academic rigor and practical experience to his field.

Profile Verified

Google scholar

Education

Samuel’s academic journey in civil engineering began at Ladoke Akintola University of Technology, where he earned a Bachelor of Technology (B. Tech) degree in Civil Engineering. Graduating with distinction, he achieved a GPA of 4.54 out of 5.0, placing him among the top two students in a cohort of 120. Currently, he is advancing his expertise as a Ph.D. candidate at Case Western Reserve University, focusing on cutting-edge research in civil engineering. This program has provided him with an exceptional platform for deepening his knowledge in sustainable building materials and the development of predictive machine learning models, broadening his understanding of how civil engineering can contribute to environmental health and sustainability.

Experience

Samuel has amassed extensive practical experience, beginning his professional career in Nigeria with FBS Construction Engineering Services, where he served as a site engineer on an ambitious multi-story hotel project. He was responsible for interpreting architectural and structural drawings, managing reinforcements, and supervising concrete batching. His roles required meticulous oversight of structural details, which helped him build a robust foundation in construction management. Later, he worked with Oat Construction and Matrix Resource Limited, where he managed the construction of commercial structures and gained hands-on experience in interpreting complex design specifications. Currently, he is applying his skills as a Research Assistant at Case Western Reserve University, where he delves into the application of innovative materials and machine learning techniques to enhance air quality and structural sustainability.

Research Interest

Samuel’s research centers on sustainable infrastructure, emphasizing the role of innovative materials in improving the built environment. His primary focus is the application of machine learning to enhance organic photocatalysts for indoor air quality management, a project aimed at mitigating pollutants in urban spaces. Additionally, Samuel is exploring bio-sensing wearables, a novel area in civil engineering that integrates biosensors with construction materials to improve environmental monitoring. His multidisciplinary research efforts reflect a forward-looking approach, seeking to integrate sustainable materials and data-driven methodologies to address pressing environmental challenges in urban infrastructure.

Awards

Samuel has received several prestigious awards that acknowledge his dedication to both academic excellence and professional growth. In 2021, he was honored with the Swanger Fellows Award at Case Western Reserve University, followed by a nomination for the Zydane Award later that year. His presentation skills earned him the People’s Award at the Three Minute Thesis (3MT) competition in 2023, a testament to his ability to communicate complex concepts effectively. Samuel was also awarded the Roy Harley Award, recognizing his promise as a graduate student in civil and environmental engineering. Most recently, he received the NCF 2023 Scholarship Award for his outstanding academic performance, further underscoring his commitment to the field of civil engineering.

Publications

“Optimizing Photodegradation Rate Prediction of Organic Contaminants: Models with Fine-Tuned Hyperparameters and SHAP Feature Analysis for Informed Decision Making” (2023) in ACS ES&T Water.

“A Novel Interpretable Machine Learning Model Approach for the Prediction of TiO2 Photocatalytic Degradation of Air Contaminants” (2024) in Scientific Reports.

“Kinetic Studies on Using Plasmonic Photocatalytic Coatings for Autogenously Improving Indoor Air Quality by Removing Volatile Organic Compounds,” presented at the 28th North American Catalysis Society Meeting.

“Innovative Antifungal Photocatalytic Paint for Improving Indoor Environment” (2023) in Catalysts.

Poster presentation on “Photocatalytic Inhibition of Microorganisms” at the Three Minute Thesis Competition.

“Habitable Home,” presented at Innovation Week at Case Western Reserve University.

“Deciphering Fungal Communication,” presented at the Gordon Research Conference.

Conclusion

Samuel Tosin Ojo embodies the qualities of a pioneering researcher, combining deep theoretical knowledge with practical applications that address real-world challenges. His dedication to sustainable building practices, innovative materials research, and application of machine learning in civil engineering positions him as a forward-thinking leader in his field. With a track record of significant contributions and ongoing commitment to improving environmental standards in civil engineering, Samuel is well-deserving of the Best Researcher Award. His vision for sustainable infrastructure and environmental health continues to inspire and influence those around him, marking him as an impactful figure in the future of civil engineering.

Xiaohui Wang | Sustainable materials | Best Researcher Award

Prof. Xiaohui Wang | Sustainable materials | Best Researcher Award

Revealing contaminants in China’s recycled PET: Enabling safe food contact applications at South China University of Technology, China

Dr. Xiaohui Wang is a prominent researcher and academic affiliated with the South China University of Technology, where she has made significant contributions to the fields of carbohydrate chemistry, biomaterials, and nanotechnology. With a solid foundation in pulp and paper engineering, she has expanded her research to explore innovative applications of biopolymers and nanomaterials, focusing on sustainability and environmental impact. Her expertise has not only advanced scientific understanding but also contributed to practical solutions in various industries, including food safety and materials engineering.

Profile Verification

Google Scholar

Education

Dr. Wang’s educational background is rooted in a rigorous academic training in the sciences. She earned her bachelor’s degree in Paper Science and Engineering, followed by a master’s degree in the same field, where her passion for material innovation blossomed. She further pursued her Ph.D. in Biomaterials, focusing on the development and characterization of chitosan and other biodegradable polymers. This comprehensive education has equipped her with the knowledge and skills necessary to lead groundbreaking research in her field.

Experience

Dr. Wang has accumulated extensive experience throughout her academic career. As a Deputy Director at the State Key Laboratory of Pulp and Paper Engineering, she leads various research initiatives and collaborates with industry partners to address pressing challenges in sustainable materials. Her leadership extends to participation in numerous national and international conferences, where she shares her insights and fosters collaborations. With a proven track record in securing research funding and mentoring students, Dr. Wang continues to inspire the next generation of researchers in her field.

Research Interests

Dr. Wang’s research interests are diverse and encompass the development of innovative materials for various applications. She specializes in the synthesis and characterization of chitosan and its composites, exploring their potential as antimicrobial agents and biodegradable alternatives to conventional materials. Her work also includes the application of nanotechnology in creating advanced materials for drug delivery systems and energy-efficient devices. Dr. Wang is particularly passionate about sustainability, focusing on how her research can contribute to more eco-friendly practices in industries such as packaging, agriculture, and biomedicine.

Awards

Dr. Wang has received several prestigious awards throughout her career, reflecting her contributions to science and technology. Among her accolades is the title of “Changjiang Scholar” Distinguished Professor, recognizing her leadership and research excellence. She has been acknowledged as a “Young Top-notch Talent” by the Organization Department and has received awards such as the Guangdong Province May 1st Labor Award and the May 4th Youth Medal. Her contributions to research have also been recognized with multiple second prizes in the Natural Science Award from the Ministry of Education and the Technical Invention Award from the Light Industry Federation. These honors underscore her commitment to advancing the field of biomaterials and sustainable practices.

Publications

Liu, H., Du, Y., Wang, X., & Sun, L. (2004). “Chitosan kills bacteria through cell membrane damage.” International Journal of Food Microbiology, 95(2), 147-155. [Cited by 1100]
Wang, X., Du, Y., & Liu, H. (2004). “Preparation, characterization and antimicrobial activity of chitosan–Zn complex.” Carbohydrate Polymers, 56(1), 21-26. [Cited by 541]
Wang, X., Du, Y., Fan, L., Liu, H., & Hu, Y. (2005). “Chitosan-metal complexes as antimicrobial agents: Synthesis, characterization and structure-activity study.” Polymer Bulletin, 55, 105-113. [Cited by 445]
Huang, F., Hou, L., Wu, H., Wang, X., Shen, H., Cao, W., Yang, W., & Cao, Y. (2004). “High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: Green-and yellow-emitting conjugated polyfluorene.” Journal of the American Chemical Society, 126(31), 9845-9853. [Cited by 372]
Yang, Y., Wang, S., Wang, Y., Wang, X., Wang, Q., & Chen, M. (2014). “Advances in self-assembled chitosan nanomaterials for drug delivery.” Biotechnology Advances, 32(7), 1301-1316. [Cited by 333]
Ge, W., Cao, S., Yang, Y., Rojas, O. J., & Wang, X. (2021). “Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions.” Chemical Engineering Journal, 408, 127306. [Cited by 250]
Liang, Z., Kang, M., Payne, G. F., Wang, X., & Sun, R. (2016). “Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots.” ACS Applied Materials & Interfaces, 8(27), 17478-17488. [Cited by 248]
Ge, W., Cao, S., Shen, F., Wang, Y., Ren, J., & Wang, X. (2019). “Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels.” Carbohydrate Polymers, 224, 115147. [Cited by 204]

Conclusion

Dr. Xiaohui Wang exemplifies the qualities of a deserving candidate for the Best Researcher Award, owing to her extensive research contributions, dedication to sustainability, and leadership in the field of carbohydrate chemistry and biomaterials. Her impressive publication record, combined with her numerous awards, attests to her impact in advancing knowledge and fostering innovation. Recognizing Dr. Wang with this award would not only honor her achievements but also inspire future research in sustainable materials, reinforcing the importance of eco-friendly practices in scientific advancements. Her continued work promises to influence the future of her field, making her a noteworthy candidate for this esteemed recognition.

Chang He | Composite structures | Best Researcher Award

Mr. Chang He | Composite structures | Best Researcher Award 

PHD student at Tongji University, China

Chang He is a dedicated Ph.D. student in Civil Engineering at Tongji University, Shanghai, where he has distinguished himself through exemplary academic performance and significant contributions to research. With a strong foundation in Civil and Hydraulic Engineering, he has garnered recognition for his innovative approach to integrating smart materials with traditional construction techniques. His commitment to advancing the field of civil engineering is evident in his participation in various high-impact research projects and his proactive engagement in scholarly activities.

Profile

ORCID

Education

Chang He began his academic journey at Shenyang Jianzhu University, where he earned his Bachelor’s degree in Civil Engineering with a commendable GPA of 87.6/100. He was recognized for his academic excellence through several awards, including the Merit Student Award and multiple scholarships. Pursuing further education, he obtained his Master’s degree in Civil and Hydraulic Engineering from Tongji University, achieving a GPA of 84.5/100. Currently, he is advancing his studies as a Ph.D. student in Civil Engineering, where he maintains an impressive GPA of 89.5/100, demonstrating his commitment to academic rigor and research excellence.

Experience

Chang He’s research experience is extensive and multifaceted. He has actively participated in several prominent research projects, including the NSFC Project focused on the integration of spherical piezoelectric smart materials with concrete, and the development of disaster acquisition robot equipment under the National Key R&D Program of China. His involvement in these projects has allowed him to gain hands-on experience in cutting-edge research methodologies and technologies, particularly in the context of structural health monitoring and disaster management. Additionally, he has contributed to the academic community as a reviewer for notable journals, further enhancing his understanding of current research trends and standards.

Research Interest

Chang He’s research interests lie at the intersection of civil engineering and advanced technology. His primary focus includes the application of machine learning and artificial intelligence to analyze and optimize the performance of construction materials and structures. He is particularly interested in exploring how innovative materials, such as fiber-reinforced polymers, can be integrated into traditional concrete structures to enhance their durability and resilience. By leveraging deep learning techniques, Chang aims to develop predictive models that can inform engineering practices and improve the safety and efficiency of civil engineering projects.

Awards

Throughout his academic career, Chang He has received several awards and honors that reflect his dedication to excellence in education and research. Notably, he was awarded the Social Work Scholarship twice, highlighting his commitment to community engagement and social responsibility. Additionally, he received the Second Prize Scholarship twice during his master’s studies, as well as the Third Prize Scholarship and the Merit Student Award during his undergraduate years. These accolades serve as a testament to his hard work, perseverance, and contributions to the academic community.

Publications

Chang He has authored and co-authored several research publications in esteemed journals, demonstrating his commitment to advancing knowledge in his field. His notable works include:

Deep Learning-Based Analysis of Interface Performance between Brittle Engineering Materials and Composites (Expert Systems with Applications, 2024).

Hyperparameter optimization for interfacial bond strength prediction between fiber-reinforced polymer and concrete (Structures, 2023).

Bayesian optimization for selecting efficient machine learning regressors to determine bond-slip model of FRP-to-concrete interface (Structures, 2022).

Semi-supervised networks integrated with autoencoder and pseudo-labels propagation for structural condition assessment (Measurement, 2023).

Application of Bayesian optimization approach for modelling bond-slip behavior of FRP-to-concrete interface (Proceedings of the 12th International Conference on Structural Health Monitoring of Intelligent Infrastructure, 2023).

An acoustic-homologous deep learning method for FRP concrete interfacial damage evaluation (Proceedings of the 12th International Conference on Structural Health Monitoring of Intelligent Infrastructure, 2023).

Conclusion

In conclusion, Chang He embodies the qualities of an exceptional researcher in civil engineering, combining academic excellence with impactful research contributions. His extensive experience, innovative research interests, and notable achievements position him as a strong candidate for the Best Researcher Award. By continuing to push the boundaries of knowledge in his field, Chang He is poised to make significant contributions to civil engineering and society as a whole. His commitment to excellence and passion for research make him a deserving nominee for this prestigious award.

Saloua El Euch Khay | Durable materials | Women Researcher Award

Prof. Dr. Saloua El Euch Khay | Durable materials | Women Researcher Award 

Professor at National Engineering School of Tunis, Tunisia.

Prof. Dr. Saloua El Euch Khay is a distinguished academic at the National Engineering School of Tunis, Tunisia, specializing in civil engineering with a particular focus on durable materials. Her contributions to the field are notable for their innovative approaches to concrete technology and materials recycling. With a robust background in research and teaching, she has significantly influenced the academic landscape in her domain, fostering the next generation of engineers through her mentorship and hands-on guidance in various projects. Her commitment to sustainability and engineering excellence has earned her recognition both nationally and internationally.

Profile

ORCID

Education

Prof. Dr. Saloua El Euch Khay’s educational journey is marked by a series of prestigious qualifications. In 2018, she achieved her Habilitation à Diriger des Recherches (HDR) in Civil Engineering, affirming her capacity to supervise doctoral research. This followed her impressive 2010 doctoral thesis, where she earned a very honorable mention for her work on fatigue phenomena and shrinkage in compacted sand concrete for roadway applications. Her academic foundation includes a national engineering degree from ENIT, where she graduated at the top of her class in 1994. She also holds an aggregation in technological disciplines, further reinforcing her expertise and commitment to civil engineering.

Experience

Prof. Dr. El Euch Khay has extensive teaching experience at ENIT, where she has served as a Maître de Conférences since 2020, sharing her knowledge in courses covering structures, roads, and synthesis projects. She has been pivotal in supervising numerous final-year projects and master’s theses, guiding students through complex research topics related to materials and structural engineering. Her previous role as Maître-Assistant from 2015 to 2020 allowed her to deepen her engagement with students and contribute significantly to innovative research projects, further solidifying her role as a leader in academia. Her prior experience as a technologist has also enriched her practical understanding of engineering applications, allowing her to bridge theoretical knowledge with real-world practice.

Research Interest

Prof. Dr. El Euch Khay’s research interests primarily revolve around the durability of construction materials, specifically in the realm of concrete technology. She focuses on the recycling of materials and the development of sustainable concrete mixtures that minimize environmental impact. Her work explores the formulation and modeling of concrete using various materials, including recycled asphalt pavement and other by-products. This research not only addresses industry challenges but also contributes to the broader discourse on sustainable construction practices. Her projects often involve collaboration with students and industry stakeholders, fostering innovation in the engineering field.

Awards

Prof. Dr. El Euch Khay has received several accolades recognizing her contributions to civil engineering and education. Her commitment to research excellence has led to awards and commendations for her innovative work in sustainable materials and concrete technology. These honors reflect her dedication to advancing the field and her impact on students and peers alike. She is often invited to present her findings at international conferences, further showcasing her expertise and the relevance of her work in today’s engineering landscape.

Publications

Prof. Dr. El Euch Khay has an extensive list of publications, with numerous articles featured in international journals that underline her research’s significance. Key publications include:

S. El Euch Khay, A. Loulizi, Z. Zayen & G. Nammouchi. Experimental and predictive study of self-compacting concrete containing reclaimed asphalt pavement, European Journal of Environmental and Civil Engineering, 2024. DOI: 10.1080/19648189.2024.2357672 (Impact Factor: 2.2)

A. Bousleh & S. El Euch Khay. Shrinkage performance and modelling of concretes incorporating crushed limestone sand with a high content of fillers for pavement slabs, European Journal of Environmental and Civil Engineering, 2023. DOI: 10.1080/19648189.2023.2276128 (Impact Factor: 2.2)

H. Zbidi, S. El Euch Khay. New Selection Process for Retaining Walls Based on Life Cycle Assessment and Economic Concerns, International Journal of Engineering Research in Africa, 2023, Vol. 66, pp 29-44. DOI: 10.4028/p-OVz45X (Impact Factor: 0.9)

H. Zbidi, S. El Euch Khay. Environmental Impact of a Reinforced Geosynthetic Retaining Wall Made of Modular Vegetated Concrete Blocks, International Journal of Scientific Research & Engineering Technology (IJSET), Vol.19, pp. 33-41, 2023. Link

W. Ben Achour, S. El Euch Khay, K. Miled & J. Neji. Experimental study of the mechanical behaviour of brick waste concrete and analytical prediction of its elastic modulus as a three composite material, International Journal of Engineering Research in Africa, 2021. DOI: 10.4028/www.scientific.net/JERA.57.125 (Impact Factor: 0.9)

Conclusion

Prof. Dr. Saloua El Euch Khay is a highly qualified candidate for the “Women Researcher Award.” Her academic achievements, research contributions, and dedication to mentorship showcase her as a role model in the engineering community, particularly for aspiring female researchers. By enhancing her outreach, expanding collaborations, and targeting higher-impact publications, she can further increase her influence in the field. Recognizing her efforts through this award will not only honor her achievements but also inspire future generations of women in science and engineering.