Hafiz Muhammad Shahzad Aslam | Civil Engineering | Best Researcher Award

Mr. Hafiz Muhammad Shahzad Aslam | Civil Engineering | Best Researcher Award

Mr. Hafiz Muhammad Shahzad Aslam | Civil Engineering | Lecturer at The University of Lahore | Pakistan

Mr. Hafiz Muhammad Shahzad Aslam is an accomplished Civil Engineer specializing in sustainable construction materials and advanced concrete technologies. He holds a Ph.D. in Civil Engineering from the University of Lahore and a Master’s degree in Civil Engineering, where he earned a Silver Medal distinction. Professionally, he has served as a Lecturer at the University of Lahore, UET Lahore, and the Institute of Southern Punjab, Multan, while also gaining practical field experience as a Site Engineer. His research focuses on the use of industrial and recycled wastes such as pumice, PET fibers, and quarry dust in concrete, development of 3D printable mortars, and evaluation of early-age mechanical and durability properties. He possesses advanced skills in materials testing, structural analysis, hydraulic modeling, and sustainable construction practices. Mr. Hafiz Muhammad Shahzad Aslam has actively contributed to the academic community with 2 Scopus-indexed documents, 5 citations, and an h-index of 2, reflecting his growing research impact. He is a member of the Pakistan Engineering Council and the Institute of Engineers, Pakistan, and has received recognition as a Silver Medalist in his Master’s program. His leadership in research projects, commitment to mentoring students, and focus on eco-friendly infrastructure highlight his potential to advance civil engineering innovation and contribute significantly to sustainable development globally.

Profile: Scopus | Google Scholar

Featured Publications 

  1. Kanwal, H., Aslam, M. S., Mughal, T. L., Asim, M., & Memon, R. M. (2020). Human hair as fiber reinforced concrete for enhancement of tensile strength of concrete. Mehran University Research Journal of Engineering & Technology, 39(1), 63–70. Citations: 16

  2. Rehman, A. U., Siddiqi, Z. A., Yasin, M., Aslam, H. M. S., Noshin, S., & Aslam, H. M. U. (2025). Experimental study on the behavior of damaged CFRP and steel rebars RC columns retrofitted with externally bonded composite material. Advanced Composite Materials, 34(1), 93–139. Citations: 10

  3. Noshin, S., Aslam, M. S., Kanwal, H., Khan, M. A., & Ahmad, A. (2022). Effects on compressive and tensile strength of concrete by replacement of natural aggregates with various percentages of recycled aggregates. Mehran University Research Journal of Engineering and Technology, 41(1), 195–201. Citations: 10

  4. Aslam, H. M. S., Rehman, A. U., Onyelowe, K. C., Noshin, S., Yasin, M., & Khan, M. A. (2024). Evaluating the mechanical and durability properties of sustainable lightweight concrete incorporating the various proportions of waste pumice aggregate. Results in Engineering, 24, 103496. Citations: 9

  5. Riaz, K., Aslam, H. M. S., Yaseen, M. W., Ahmad, H. H., Khoshkonesh, A., & Noshin, S. (2022). Flood frequency analysis and hydraulic design of bridge at Mashan on river Kunhar. Archives of Hydro-Engineering and Environmental Mechanics, 69(1). Citations: 9

  6. Noshin, S., Khan, M. A., Salman, M., Aslam, M. S., Ahmad, H., & Rehman, A. U. (2021). Evaluating the compressive strength of concrete containing recycled aggregate in different curing conditions. Journal of Applied Engineering Sciences, 11(2), 127–136. Citations: 9

  7. Aslam, H. M. S., Noshin, S., Riaz, K., Rehman, A. U., Joyiaa, F. M., & Adnan, M. (2023). Effect of waste polyethylene terephthalate bottle fibers on the mechanical properties of recycled concrete. Advances in Civil and Architectural Engineering, 14(27), 1–13. Citations: 6

 

Seyedrasoul Nabavian | Civil | Best Researcher Award

Assist. Prof. Dr. Seyedrasoul Nabavian | Civil | Best Researcher Award

Assist. Prof. Dr. Seyedrasoul Nabavian | Civil – Ayatollah Boroujeri University, Iran

Dr. Seyedrasoul Nabavian is an emerging scholar in the field of civil engineering with a developing academic track record in structural health monitoring and fracture mechanics. Currently serving as an Assistant Professor of Civil Engineering at Ayatollah Boroujerdi University, he has demonstrated a strong commitment to advancing knowledge in structural dynamics, particularly through innovative output-only modal identification techniques and sustainable material research. His contributions, though modest in scale at this stage of his career, display focused rigor, collaboration, and technical depth, positioning him as a researcher with high potential in both academic and applied engineering domains.

Profile Verified:

Google Scholar

Education:

Dr. Nabavian received his academic training in civil and structural engineering, with advanced studies focusing on structural mechanics, space structures, and material behavior under dynamic and environmental stressors. Through his postgraduate education, he developed a foundational interest in experimental and analytical methods for diagnosing structural performance, leading to his ongoing work in monitoring systems and advanced concrete technologies.

Experience:

Professionally, Dr. Nabavian has worked in both academic and collaborative research environments, partnering with national and international researchers to contribute to ongoing challenges in structural reliability and monitoring. His academic appointments have enabled him to teach courses in structural engineering, supervise students, and contribute to institutional research projects. Moreover, his participation in interdisciplinary teams involving experimental mechanics and computational analysis has strengthened his methodological base and research versatility.

Research Interests:

His research interests are concentrated in structural identification and monitoring, fracture mechanics, and sustainable construction materials. Specifically, he investigates output-only techniques for modal identification, noise effects on signal processing in structures, and fracture behavior in recycled aggregate concrete enhanced with nanomaterials or subjected to extreme conditions. These interests reflect a critical alignment with global trends toward smart infrastructure, resilient design, and environmental sustainability in civil engineering.

Awards:

While specific awards or honors are not listed in the current data, Dr. Nabavian’s collaborative research output and publication record in indexed journals demonstrate recognition within the academic community. His work has been cited across a range of publications, and he has contributed to the growing body of knowledge in non-invasive structural monitoring and advanced material modeling. As he continues to build his citation metrics and publication footprint, he is well-positioned to be recognized through future awards focused on early-career researchers or interdisciplinary contributions.

Publications:

📌 “Determining minimum number of required accelerometers for output-only structural identification of frames”
arXiv, 2020 – Cited by 4
A foundational study proposing optimal sensor placement strategies for structural monitoring.
🔍 “Effect of noise on output-only modal identification of beams”
arXiv, 2020 – Cited by 3
Explores how noise affects the accuracy of modal properties in beams.
🧪 “Output-only modal analysis of a beam via frequency domain decomposition method using noisy data”
International Journal of Engineering, 2019 – Cited by 3
Improves reliability in modal analysis using frequency-based techniques with noisy datasets.
♻️ “Fracture characteristics of recycled aggregate concrete using work-of-fracture and size effect methods: the effect of water to cement ratio”
Archives of Civil and Mechanical Engineering, 2023 – Cited by 3
Focuses on sustainable construction through recycled materials and mechanical modeling.
🌱 “Influence of nano‐silica particles on fracture features of recycled aggregate concrete using boundary effect method”
Structural Concrete, 2024 – Cited by 1
Investigates how nano-silica improves recycled concrete using experimental fracture testing.
🎯 “Damping estimation of a double-layer grid by output-only modal identification”
Scientia Iranica, 2021 – Cited by 1
Analyzes structural damping through output-only techniques applied to spatial grids.
🏗️ “Output-only Structural Identification of a Double-layer Grid with Ball Joint System”
Modares Civil Engineering Journal, 2026 – Not yet cited
Recent publication addressing modal identification in jointed structural frameworks.

Conclusion:

In conclusion, Dr. Seyedrasoul Nabavian represents a promising academic with solid technical grounding and a growing portfolio of peer-reviewed research. His contributions, although currently at an early career stage in terms of citations and publication scale, are impactful in terms of methodology and societal relevance. His dedication to structural monitoring, sustainability, and experimental mechanics underscores a thoughtful research agenda that addresses both immediate engineering challenges and long-term infrastructure needs. With continued support and recognition, he is expected to expand his research reach and strengthen his role in the international civil engineering research community.

 

 

 

Burak Çırağ | Civil Engineering | Young Scientist Award

Dr. Burak Çırağ | Civil Engineering | Young Scientist Award

Research Assistant | Atatürk University | Turkey

Burak Çırağ is a research assistant at Atatürk University, specializing in hydraulic engineering within the Department of Civil Engineering. His research focuses on stormwater drainage systems, flood performance, and the optimization of water management strategies. With an extensive background in environmental engineering and hydraulic modeling, Çırağ is actively contributing to national and international projects related to flood management and sustainable drainage systems. His academic journey is marked by rigorous research and an unwavering commitment to advancing water resource management techniques.

Profile

Scopus

Education
Burak Çırağ completed his bachelor’s degree in Civil Engineering in June 2018, followed by a master’s degree with a thesis titled “Evaluation of Flood Performance in Stormwater Drainage Systems” under the guidance of Mahmut Fırat in 2021. He is currently pursuing his doctoral studies, delving deeper into optimizing stormwater systems and flood control mechanisms. Throughout his academic tenure, Çırağ has cultivated a strong foundation in hydrology, hydraulic modeling, and environmental engineering.

Experience
Since February 2020, Burak Çırağ has been serving as a research assistant in the Civil Engineering Department at Atatürk University, focusing on hydraulic systems and stormwater management. He has contributed to several national research projects, including evaluating the performance of stormwater drainage systems and exploring optimization algorithms for stormwater network planning. Çırağ is also involved in hydrodynamic modeling and flood behavior analysis in the Karasu Basin. These research initiatives are part of larger efforts to advance flood prediction and water management technologies.

Research Interests
Çırağ’s primary research interests lie in hydraulic engineering, particularly in the analysis and optimization of stormwater drainage systems. He focuses on flood modeling, performance evaluation, and sustainable urban drainage systems (SUDS). Additionally, his work explores the impact of land use and surface runoff on flood propagation. Çırağ is committed to understanding and mitigating flood risks in urban environments through advanced modeling techniques and the development of optimized drainage strategies.

Awards
Burak Çırağ has received a Certificate in Data Protection and Privacy (KVKK) from Atatürk University in June 2022, recognizing his commitment to professional development in security and legal matters. While his focus remains on research and academic growth, his contributions have garnered attention within national scientific communities.

Publications

  1. Çırağ, B., & Fırat, M. (2023). Two-dimensional (2D) flood analysis and calibration of stormwater drainage systems using geographic information systems. Water Science and Technology, 87(10), 2596. [DOI: 10.2166/wst.2023.126]
  2. Çırağ, B., & Fırat, M. (2023). Investigation of failures occurring in stormwater drainage systems according to system characteristics and spatial variation. International Ecology and Environment Congress, 41-52.
  3. Çırağ, B., & Fırat, M. (2023). Flood analysis of conventional stormwater drainage systems and examples of urban sustainable drainage systems. International Ecology and Environment Congress, 31-41.
  4. Çırağ, B., Fırat, M., & Aydın, Ö. (2021). Analysis of the flood performance of stormwater drainage systems for different return periods. 4th International Conference of Contemporary Affairs in Architecture and Urbanism, 774-785.
  5. Taşkolu, İ., Acar, R., & Çırağ, B. (2024). Trend analysis of precipitation and temperatures in the Black Sea region using the innovative trend analysis. Journal of Studies in Advanced Technologies, 2(2), 74-82. [DOI: 10.63063/jsat.1505540]
  6. Çırağ, B., & Fırat, M. (2022). Evaluation of land use types and surface runoff effects in flood propagation maps: A case study of Malatya Province. Kahramanmaraş Sütçü İmam University Journal of Engineering Sciences, 25(3), 222-236.
  7. Çırağ, B., Taşkolu, İ., Acar, R., Fırat, M., & Şengül, S. (2024). Evaluation of trends in precipitation and temperature values alongside land use/cover changes: A case study of Erzurum Province. XII. National Hydrology Congress, 384-393.

Conclusion
Burak Çırağ is a dedicated researcher committed to advancing the field of hydraulic engineering, particularly in stormwater management and flood mitigation. His work, which bridges academic theory and practical application, aims to enhance water resource management and reduce flood risks in urban settings. Through his extensive research, publications, and contributions to national and international projects, Çırağ is making significant strides toward creating sustainable water management systems that can be adapted to the growing challenges posed by climate change and urbanization. His academic and professional achievements reflect a future leader in environmental engineering.

Dr. Kassa Tareke | urban planning | Best Researcher Award

Dr. Kassa Tareke | urban planning | Best Researcher Award

Dr. Kassa Tareke, Ethiopian Civil Service University, Ethiopia

Kassa Moges Tareke is an Assistant Professor and Head of the Quality & Curriculum Coordination Office at the Ethiopian Civil Service University, Addis Ababa, Ethiopia 🇪🇹. With over two decades of professional experience, he specializes in urban planning, transport management, and sustainable development 🌍. Dr. Kassa holds a Ph.D. in Urban Planning and Development 🏗️ and has contributed significantly to curriculum development, research coordination, and thematic projects. He is a member of multiple professional associations and has presented research at various national and international platforms 🎓✨.

Professional Profile:

Scopus

Orcid

Summary of Suitability

Dr. Kassa Moges Tareke is highly suitable for a Best Researcher Award, considering his extensive academic background, professional experience, and significant contributions to urban planning and sustainable development

Education & Experience

  • 🎓 Ph.D. in Urban Planning and Development (2019): Ethiopian Civil Service University
  • 🎓 Master’s in Environment and Climate Change Management (2013): Ethiopian Civil Service University
  • 🎓 First Degree in Geography (2005): Bahir Dar University
  • 👨‍🏫 Assistant Professor & Department Head (2019–Present): Ethiopian Civil Service University
  • 🛠️ Urban Land Development Expert (2013–2014): Tigray Regional Bureau of Urban Development
  • 📚 Lecturer (2014–2019): Ethiopian Civil Service University
  • 🏢 Public Sector Office Leader (2010–2013): Mekelle City Administration

Professional Development

Dr. Kassa Moges is a prolific researcher and educator with a strong focus on urbanization, transport systems, and climate-friendly development 🌱🚉. He has led multiple thematic projects, such as exploring urban transformation trajectories and sustainable transport practices 🏙️. He has reviewed articles for prominent journals and collaborated with local and international bodies to foster sustainable urban planning policies 📖🤝. His dedication to quality education and research is reflected in his significant contributions to curriculum amendments, research manuals, and graduate policies 🎯📘.

Research Focus

Dr. Kassa’s research emphasizes sustainable urbanization, climate change adaptation, and transport systems 🌍🚌. His work explores topics like environmental awareness in urban transport, the nexus of infrastructure development, and urban poverty alleviation 📊📉. He is particularly interested in analyzing policies, strategies, and practices for promoting eco-friendly and equitable urban development 🚦🌿. Through interdisciplinary approaches, Dr. Kassa aims to advance research on urban resilience, environmental sustainability, and community-centered urban planning 🏘️💡.

Awards & Honors

  • 🏅 Recognized member of the Ethiopian Urban Planners Association (2022)
  • 🏅 Member of the Ethiopian Gender Learning Forum (2022)
  • 🌍 Global Society of Tigray Scholars & Professionals Member (2024)
  • 🏆 Scientific Committee Member, Annual International Congress on Civil Engineering (2024)

Publication Top Notes:

📚 “Mediating Role of Environmental Awareness for the Nexus between Perceived Risks of COVID-19 Pandemic and Use of Sustainable Transportation: Evidence from Urban Passengers in Ethiopia, 2022”
1 citation. 🌍🚉

📚 “How the driving behaviors and customer handling of public transportation operators have been impacted by the COVID-19 pandemic in Addis Ababa, Ethiopia: the perspective of protection motivation theory?”
1 citation. 🚌🚦

📚 “Impact of COVID-19 pandemic on the people’s choice of urban public transportation modes and mobility in Addis Ababa and Hawassa city, Ethiopia”
3 citations. 🌆🚇

📚 “Impacts of urban safety net on income, food expenditure and intake capacity of poor households in Addis Ababa city, Ethiopia, 2021”
1 citation. 🏘️🍽️