Muhammad Noman Shahid | Mechanical Engineering | Best Researcher Award

Mr.Muhammad Noman Shahid | Mechanical Engineering | Best Researcher Award

MS Scholar Capital University of Science and Technology Pakistan

Muhammad Noman Shahid is a dedicated Mechanical Engineer currently pursuing an MS in Mechanical Engineering at CUST, Islamabad. With a CGPA of 4.00/4.00 and a solid foundation in mechanical engineering principles, Muhammad’s expertise spans FEA, CFD, topological optimization, and CAD modeling. His academic and professional journey reflects his commitment to innovation and excellence in the engineering field.

Profile

ORCiD

Education

๐ŸŽ“ Muhammad Noman Shahid is completing his MS in Mechanical Engineering at Capital University of Science and Technology (CUST), Islamabad, with an expected graduation date of July 2025 and a perfect CGPA of 4.00/4.00. He also holds a BS in Mechanical Engineering from the same institution, achieved from 2019 to 2023, where he worked on the “Design and Development of Continuous Passive Motion (CPM) Machine for Post Knee Surgery Rehabilitation” as his final year design project.

Experience

๐Ÿ’ผ Muhammad’s professional experience includes an internship at SABRO Air Conditioning Pakistan in Islamabad, where he gained over 200 hours of hands-on experience in various HVAC manufacturing processes. His contributions included optimizing production time, ensuring product integrity, and enhancing overall HVAC system efficiency. Muhammad has also demonstrated leadership in numerous extracurricular roles, such as Focal Person at Pakistan Nuclear Society and President Media at Al-Muhandis Society, CUST.

Research Interests

๐Ÿ”ฌ Muhammad’s research interests lie in mechanical engineering, focusing on fluid dynamics, computational modeling, topological optimization, and biomechanics. He is particularly passionate about developing innovative solutions in tissue engineering and energy storage systems.

Awards and Funding

๐Ÿ… Muhammad has received several accolades for his academic excellence and innovative projects. In 2024, he achieved the Chancellorโ€™s Honor Roll and secured the 3rd position in Mechanical Engineering (Entrepreneurship) at the 2nd Federal Engineering Capstone Expo. He also received IGNITE funding under the National Technology Fund’s Grossroot ICT Research Initiative for his final year design project.

Publications

๐Ÿ“š Muhammad has published significant research work, including:

  1. “Computational Investigation of the Fluidic Properties of Triply Periodic Minimal Surface (TPMS) Structures in Tissue Engineering,” Designs, vol. 8, no. 4, 2024. Link
    • Cited by: Articles in tissue engineering and fluid dynamics journals.
  2. “A Biomechanical Approach for Computational Assessment of Heavy Payload Robots in Human-Robot Accident Scenarios for Industry 4.0,” Nanotechnology Reviews, 2023. [In Review]

 

Tanaya Mandal | Engineering | Best Researcher Awards

Ms. Tanaya Mandal | Engineering | Best Researcher Awards

PhD Candidate | Texas A&M University | United States

Short Bio ๐ŸŒŸ

Tanaya Mandal is a dynamic materials engineer and Ph.D. candidate at Texas A&M University, with over four years of experience in researching the impact of material temperature on product performance. She has worked with prestigious institutions such as GE and TRI, and she actively chairs the Materials for Extreme Environments Technical Committee at SAMPE North America.

Profile

SCOPUS

Education ๐ŸŽ“

Tanaya Mandal is currently pursuing a Ph.D. in Materials Science and Engineering at Texas A&M University, maintaining a perfect GPA of 4.00. She previously earned her M.E. in the same field with a Corrosion Certificate from Texas A&M University in December 2020. Before that, she received her M.HSc from Trinity School of Medicine in May 2019, and her B.S. in Biochemistry and Molecular Biology from Houston Baptist University in May 2013.

Experience ๐Ÿ› ๏ธ

Texas Research Institute, Austin, TX
Application Engineering/Research & Development Intern (May 2023 โ€“ August 2023)
Tanaya collaborated with customers to develop prototypes for aerospace applications and engaged in the development of wear protection coatings. She worked closely with the sales team and analyzed high-temperature adhesion applications.

Texas A&M University, College Station, TX
PhD Research Student/Graduate Teaching Assistant (January 2021 โ€“ Present)
She led a project for the Air Force Office of Scientific Research, creating and analyzing self-healing vitrimer composites for aerospace. She also taught and assessed courses in materials science and engineering.

General Electric Global Research, Niskayuna, NY
Edison Technical Research Intern (June 2020 โ€“ August 2020)
Tanaya designed multilayer nitride coatings, evaluated hardness testing of various alloys, and participated in electrochemistry testing for accident tolerant fuel projects.

Research Interest ๐Ÿ”ฌ

Tanaya’s research interests include the development and characterization of high-performance materials for extreme environments, particularly focusing on self-healing composites, high-temperature adhesion applications, and advanced nuclear reactors.

Awards ๐Ÿ†

  • Best Oral Presentation in Advanced Materials and Nanotechnology at the Chemical Engineering Graduate Student Association (ChEGSA) Research Symposium (2024)
  • Moderator for Non-Destructive Evaluation & Materials Testing Technical Presentations at CAMX (2023)
  • SAMPE Student Chapter Grant Award (2021-2023)
  • Semifinalist for SAMPE University Research Symposium (URS) Program Competition (2021)
  • Women in 3D Printing (Wi3DP) Next Gen Mentorship Program (2021-present)
  • Judge for Senior Division of Materials Science at the Texas Science & Engineering Fair (2021)
  • SAMPE University Leadership Experience Award (2020)
  • Judge for Undergraduate Research Symposium at TAMU (2019)

Publications ๐Ÿ“š

  • Mandal, T., Ozten, U., Vaught, L., Meyer, J.L., Amiri, A., Polycarpou, A., Naraghi, M. (2024). Processing and Mechanics of Aromatic Vitrimeric Composites at Elevated Temperatures and Healing Performance. J. Compos. Sci., 8, 252.
  • Mandal, T., Rodriguez-Melendez, D., Palen, B., Long, C.T., Chiang, H., Sarikaya, S., Naraghi, M., Grunlan, J.C. (2023). Heat Shielding Nanobrick Wall for Carbon Fiber Reinforced Polymer Composites. American Chemist Society Applied Polymer Materials, 5(5), 3270-3277.
  • Hoffman, A. K., Umretiya, R. V., Crawford, C., Spinelli, I., Huang, S., Buresh, S., Perlee, C., Mandal, T., Abouelella, H., Rebak, R. B. (2023). The relationship between grain size distribution and ductile to brittle transition temperature in FeCrAl alloys. Materials Letters, 331, 133427.